Radiation-MHD Simulations of

Black Hole Accretion Flows \& Outflows

Ken OHSUGA (NAOJ)

WHY RADIATION-MHD?

- Disk viscosity is magnetic origin.
- Dissipation of the magnetic energy heats up the gas.
- Difference of the radiative cooling rate leads to the difference of the disk structure (thick or thin, hot or cold).
- Radiation- and/or magnetic pressusure drive jets and disk outflows.
- Clumpy, time-dependent outflow is produced by thermal instability (that is, radiative cooling).

Performing radiation-MHD simulations, we investigate the inflow-outflow structure.

BASIC EQUATIONS OF RADIATION-MHD

$\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \boldsymbol{v})=0$
$\frac{\partial(\rho \boldsymbol{v})}{\partial t}+\boldsymbol{\nabla} \cdot\left(\rho \boldsymbol{v} \boldsymbol{v}-\frac{\boldsymbol{B} \boldsymbol{B}}{4 \pi}\right)=-\boldsymbol{\nabla}\left(p+\frac{|\boldsymbol{B}|^{2}}{8 \pi}\right)+\frac{\chi}{c} \boldsymbol{F}_{0}-\rho \boldsymbol{\nabla} \psi$
$\frac{\partial e}{\partial t}+\boldsymbol{\nabla} \cdot(e \boldsymbol{v})=-p \boldsymbol{\nabla} \cdot \boldsymbol{v}+\frac{4 \pi}{c^{2}} \eta J^{2}-4 \pi \kappa B+c \kappa E_{0}$

$$
\frac{\partial E_{0}}{\partial t}+\boldsymbol{\nabla} \cdot\left(E_{0} \boldsymbol{v}\right)=-\boldsymbol{\nabla} \cdot \boldsymbol{F}_{0}-\boldsymbol{\nabla} \boldsymbol{v}: \mathbf{P}_{0}+4 \pi \kappa B-c \kappa E_{0}
$$

$$
\frac{\partial \boldsymbol{B}}{\partial t}=\boldsymbol{\nabla} \times\left(\boldsymbol{v} \times \boldsymbol{B}-\frac{4 \pi}{c} \eta \boldsymbol{J}\right) \quad \boldsymbol{J}=\frac{4 \pi}{c} \boldsymbol{\nabla} \times \boldsymbol{B}
$$

\square RHD terms \bigcirc MHD terms

NUMERICAL METHOD

- Cylindrical coordinate ($r, \boldsymbol{\phi}, z$); $r=2$ - $100 \mathrm{Rs}, \mathrm{z}=0$ - 100 Rs
- Axisymmetry \& Mid-plane Symmetry
- Initial Conditions \& density parameter

SUPER-EDDINGTON FLOWS

$$
\rho / \rho_{0},\left[\rho_{0}=1.0 \mathrm{~g} \mathrm{~cm}^{-3}\right]
$$

Radiation-pressure supported disk + radiatively-driven jet
$-M_{\text {dot }} \sim 60 L_{\text {edd }} / c^{\mathbf{2}}$

- $\boldsymbol{L}_{\text {bol }} \gtrless \boldsymbol{L}_{\text {edd }}$
$-\boldsymbol{L}_{\text {trap }} \geqslant \boldsymbol{L}_{\text {edd }}$

Ohsuga et al. 2009, PASJ, 6I, L7;
Ohsuga, Mineshige 20 I I, ApJ, 726, 2
$M_{\text {BH }}=10 M_{\text {sun }}$

SUPER-EDDINGTON FLOWS

$\rho / \rho_{0},\left[\rho_{0}=1.0 \mathrm{~g} \mathrm{~cm}^{-3}\right]$

Radiation-pressure supported disk + radiatively-driven jet
$-M_{\text {dot }} \mathbf{\sim} \mathbf{6 0} L_{\text {edd }} / \mathbf{c}^{\mathbf{2}}$

- $\boldsymbol{L}_{\text {bol }} \geq \boldsymbol{L}_{\text {edd }}$
- $\boldsymbol{L}_{\text {trap }} \gtrsim \boldsymbol{L}_{\text {edd }}$

Ohsuga et al. 2009, PASJ, 6I, L7;
Ohsuga, Mineshige 201 I, ApJ, 726, 2
$M_{B H}=10 M$ sun

$$
\begin{gathered}
\text { STANDARD DISK \& RIAF } \\
\rho / \rho_{0,},\left[\rho_{0}=10^{-4} \mathrm{~g} \mathrm{~cm}^{-3}\right]
\end{gathered} \quad \rho / \rho_{0},\left[\rho_{0}=10^{-8} \mathrm{~g} \mathrm{~cm}^{-3}\right]
$$

Mвн $_{\text {в }}=10 \mathrm{M}$ sun
$L_{\text {bol }} \sim 10^{-4} L_{\text {edd }}, M d o t \sim 10^{-3} L_{\text {edd }} / C^{2} \quad L \sim 10^{-12} L_{\text {edd }}, M d o t \sim 10^{-5} L_{\text {edd }} / C^{2}$ Cold, thin disk

STANDARD DISK \& RIAF

$\rho / \rho_{0},\left[\rho_{0}=10^{-4} \mathrm{~g} \mathrm{~cm}^{-3}\right]$
$M_{B H}=10 M$ sun
Lbol $\sim 10^{-4} L_{\text {edd }}, M d o t \sim 10^{-3} L_{\text {edd }} / C^{2}$ Cold, thin disk $\rho / \rho_{0},\left[\rho_{0}=10^{-8} \mathrm{~g} \mathrm{~cm}^{-3}\right]$

$L \sim 10^{-1} 1 L_{\text {edd }}, M$ dot $\sim 10^{-5} L_{\text {edd }} / C^{2}$ Hot, thick disk \& magnetic jet

STANDARD DISK \& RIAF

$\rho / \rho_{0},\left[\rho_{0}=10^{-4} \mathrm{~g} \mathrm{~cm}^{-3}\right]$
$M_{B H}=10 M$ sun
Lbol $\sim 10^{-4} L_{\text {edd }}, M d o t \sim 10^{-3} L_{\text {edd }} / C^{2}$ Cold, thin disk $\rho / \rho_{0},\left[\rho_{0}=10^{-8} \mathrm{~g} \mathrm{~cm}^{-3}\right]$

$L \sim 10^{-1} 1 L_{\text {edd }}, M$ dot $\sim 10^{-5} L_{\text {edd }} / C^{2}$ Hot, thick disk \& magnetic jet

Our RMHD simulations succeeded in reproducing three types of flows (Super-Eddington, standard, RIAF)

OBSERVED LUMINOSITY

 A $L>20 L_{\text {edd }}$

RADIATION-MHD JETS

Our RMHD simulations reveal a new type of jet: Radiatively-accelerated and magnetically collimated jet

RADIATION-MHD JETS

Takeuchi, Ohsugga, Mineshige. 20 I 0, PASJ, 62, L43
Our RMHD simulations reveal a new type of jet; Radiatively-accelerated and magnetically collimated jet

RADIATION-MHD JETS

Takeuchi, Ohsuga, Mineshige. 20 I 0, PASJ, 62, L43
Our RMHD simulations reveal a new type of jet: Radiatively-accelerated and magnetically collimated jet

TIME-DEPENDENT
 Ohsuga in prep. CLUMPY OUTFLOW

We found time-dependent, clumpy outflows, 20-50, from the super-Eddington disks

We found time-dependent, clumpy outflows, 20-50, from the super-Eddington disks

THERMAL INSTABILITY

Time-dependent absorbing feature.

$$
\begin{gathered}
\text { Lbol } F L_{\text {edd }} \\
V_{\text {out }} \sim 0.03 \mathrm{c}-0.1 \mathrm{c} \\
\log \left(\mathrm{NH}_{\mathrm{H}}\right) \sim 23-25
\end{gathered}
$$

LIMIT-CYCLE OSCILLATION

 Ohsuga 2006, ApJ, 640, 923

Thermal viscous instability induces limit-cycle behavior.

LIMIT-CYCLE OSCILLATION

Ohsuga 2006, ApJ, 640, 923

Thermal viscous instability induces limit-cycle behavior.

LIMIT-CYCLE OSCILLATION

Our simulations nicely fit the observations of microquasar, GRSI9|5+l05.
I. Luminosity variation

$$
2 L_{\text {edd }} \leftrightarrow 0.2 L_{\text {edd }}
$$

2.Timescale~several 10 sec.
3. Intermittent outflow.

AGN FEEDBACK

We find that mass outflowrate can exceed Ledd/c², and momentum ejection-rate can exceed Ledd/c.
Feedback from the superEddington flow would affect the evolution of the host galaxy and might contribute to establish ' M - σ relation' (King 2003).

