Radiation-MHD Simulations of Black Hole Accretion Flows & Outflows

Ken OHSUGA (NAOJ)

WHY RADIATION-MHD ?

- **Disk viscosity** is magnetic origin.
- Dissipation of the magnetic energy heats up the gas.
- Difference of the radiative cooling rate leads to the difference of the **disk structure** (thick or thin, hot or cold).
- Radiation- and/or magnetic pressusure drive jets and disk outflows.
- Clumpy, time-dependent outflow is produced by thermal instability (that is, radiative cooling).

Performing radiation-MHD simulations, we investigate the inflow-outflow structure.

BASIC EQUATIONS OF RADIATION-MHD

NUMERICAL METHOD

- Cylindrical coordinate (r, ϕ, z); r=2-100Rs, z=0-100Rs
- Axisymmetry & Mid-plane Symmetry
- Initial Conditions & density parameter

SUPER-EDDINGTON FLOWS

ρ/ρ_0 , [ρ_0 =1.0 g cm⁻³]

Radiation-pressure supported disk + radiatively-driven jet

-Mdot~60Ledd/C²

-Lbol >Ledd

-Ltrap 2Ledd

Ohsuga et al. 2009, PASJ, 61, L7; Ohsuga, Mineshige 2011, ApJ, 726, 2

M_{BH}=10Msun

SUPER-EDDINGTON FLOWS

ρ/ρ_0 , [ρ_0 =1.0 g cm⁻³]

Radiation-pressure supported disk + radiatively-driven jet

-Mdot~60Ledd/c²

-Lbol >Ledd

-Ltrap 2Ledd

Ohsuga et al. 2009, PASJ, 61, L7; Ohsuga, Mineshige 2011, ApJ, 726, 2

M_{BH}=10Msun

STANDARD DISK & RIAF $\rho/\rho_0, [\rho_0=10^{-4} \text{ g cm}^{-3}]$ $\rho/\rho_0, [\rho_0=10^{-8} \text{ g cm}^{-3}]$

M_{BH}=10Msun

 $L_{bol} \sim 10^{-4} L_{edd}$, $Mdot \sim 10^{-3} L_{edd}/c^2$ Cold, thin disk $L \sim 10^{-12}L_{edd}$, $Mdot \sim 10^{-5}L_{edd}/c^2$ Hot, thick disk & magnetic jet

M_{BH}=10Msun

 $L_{bol} \sim 10^{-4} L_{edd}$, $Mdot \sim 10^{-3} L_{edd}/c^2$ Cold, thin disk

 $L \sim 10^{-12}L_{edd}$, $Mdot \sim 10^{-5}L_{edd}/c^2$ Hot, thick disk & magnetic jet

M_{BH}=10Msun

 $L_{bol} \sim 10^{-4} L_{edd}$, $Mdot \sim 10^{-3} L_{edd}/c^2$ Cold, thin disk

 $L \sim 10^{-12}L_{edd}$, $Mdot \sim 10^{-5}L_{edd}/c^2$ Hot, thick disk & magnetic jet

OBSERVED LUMINOSITY

∠ L≲L_{edd}

Radiative Flux is mildly collimated, ≤20°
Luminosity is estimated as L>20L_{edd} for a face-on observer.
In contrast, the objects might be observed to be L≤L_{edd}, if observer's viewing angle is much larger than 20°.

Radiation energy (E₀, color) Radiation flux, (**F**₀, vector)

RADIATION-MHD JETS

RADIATION-MHD JETS

RADIATION-MHD JETS

TIME-DEPENDENT CLUMPY OUTFLOW

M_{BH}=10Msun

Ohsuga in prep.

<u>We found time-dependent, clumpy outflows, 20-50°,</u> <u>from the super-Eddington disks</u>

Thursday, November 3, 2011

TIME-DEPENDENT CLUMPY OUTFLOW

M_{BH}=10Msun

Ohsuga in prep.

<u>We found time-dependent, clumpy outflows, 20-50°,</u> <u>from the super-Eddington disks</u>

Thursday, November 3, 2011

Thursday, November 3, 2011

Time-dependent absorbing feature. *L*_{bol}≤*L*_{edd} *V*_{out}~0.03c-0.1c *L*og(*N*_H)~23-25

LIMIT-CYCLE OSCILLATION

Ohsuga 2006, ApJ, 640, 923

Thermal viscous instability induces limit-cycle behavior.

LIMIT-CYCLE OSCILLATION

 $\log \rho$

-6

-4

-8

Ohsuga 2006, ApJ, 640, 923

Thermal viscous instability induces limit-cycle behavior.

LIMIT-CYCLE OSCILLATION

Our simulations nicely fit the observations of microquasar, GRS1915+105.

 Luminosity variation 2L_{edd} ↔ 0.2L_{edd}
 Timescale~several 10 sec.
 Intermittent outflow.

AGN FEEDBACK

We find that mass outflowrate can exceed L_{edd}/c^2 , and momentum ejection-rate can exceed L_{edd}/c . Feedback from the super-Eddington flow would affect the evolution of the host 10⁴ galaxy and might contribute to establish '*M*- σ relation' (King 2003).