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Introduction

Traditionally, plasma photoionization is calculated from the condition of statistical 
equilibrium, which means that the ionization and recombination rates are balanced to 
each other for the local gas temperature, density, and radiation field. Statistical equilibrium 
assumes infinitely fast rates and an instantaneous adjustment to the local thermodynamic 
and radiation state. However, if the local state changes in time and if the timescale to 
reach ionization equilibrium is longer than the dynamic timescale, then it is necessary to 
take into account the full temporal dependence of the state equations.

There are many astrophysical systems in which time-dependent photoionization (TDP) 
modeling is not only applicable, but necessary. Some examples include the interstellar 
medium [1-2], H ii regions [3-4], planetary nebulae [5-7], novae and supernovae [8-10, 
17], the reionization of the intergalactic medium  [11-16], ionization of the solar 
chromosphere  [18], Gamma ray burts  [19-20], accretion discs  [21], active galactic 
nuclei  [22-24], and quasars  [25]. Nevertheless, self-consistent calculations of 
photoionized media that vary with time are scarce or non existent.

We present preliminary results on the development of a photoionization model where the 
energy, ionization balance and radiative transfer equations are considered in their full time-
dependent form. 
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Abstract
Photoionization modeling codes have been developed over the last three 
decades, achieving powerful predictions based on a high degree of 
complexity in terms of the physical processes considered in the 
simulations. Nevertheless, the temporal dependency of the equations is 
usually neglected or included through very simplistic approximations. 
Here we present the first efforts on the development of a self-consistent 
photoionization model where the energy, ionization balance and radiative 
transfer equations are considered in their full time-dependent form. With 
these model we are able to predict the departures from the steady-state 
of a photoionized gas given the time variability of the radiation source. 
These results are particularly applicable to active galactic nuclei outflows 
where the energy source, the optical/UV/X-ray continuum, is highly 
variable.
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Simulations for the photoionization of a slab at constant density for different illumination fluxes. 
In all these cases the density is fixed at n=104  cm-3, the radiation field is a power-law with 
photon index Г=2, and composed of only hydrogen atoms. At a given time t=107  sec, the 
source flux is increased by 3 times its original value. We then follow the evolution of the gas 
temperature until the system returns to equilibrium.

Results – Characteristic Times
Since the temperature and the radiation field evolve with time at each point in the slab, then 
the different characteristic times are functions of both position and time. In the next 3 Figures 
we show the photoionization (PI), recombination, propagation and light travel characteristic 
times as functions of the distance R at 3 different times in the simulation.

Results – Fixed Initial Pressure
We have also carried out simulations in which the gas pressure is held fixed at one 
particular value (P=4x108  dyn/cm2) at the initial time. The equilibrium (t=0)  solution is 
found, which provides a density profile. We then let the pressure to evolve with time, fixing 
the gas density to the profile obtained initially.  

This Figure shows each one of  the physical processes 
responsible for the heating or cooling of the gas, plotted 
along the distance R and for each time step.

The dominant process is the photoionization heating. In 
a pure H gas, radiative recombination is unable to 
control the heating. Thus, cooling due collisional 
excitation is needed to reach equilibrium again. 

Compton heating/cooling plays a minor role in these 
simulations.

- Equilibrium Solution at t=0 s. Initially the system is in 
equilibrium, thus the PI and recombination times (per particle) are 
the same. The propagation or Stromgren time is shorter for small 
distances, meaning that for that region the gas will be hot and 
ionized. At R~7x1016  cm  gets longer than the PI and 
recombination times, letting the gas to cool down and become 
more neutral.

- Flux variation at t=107  s. The ionizing flux is increased by a 
factor of 3 as an step function. This causes a departure from 
equilibrium, which is evident near the interface between the 
ionized and the neutral zones. Since the flux is increased, the PI 
heating becomes more important, raising the temperature.

- Going back to equilibrium. At later times (t>107 s) after the flux 
variation, the departure from equilibrium moves deeper into the 
slab. However, the regions closer to the source are already 
getting to their equilibrium values, and that is why the PI and 
recombination times are equal for R<1017 cm. Note that in all the 
cases the relevant times are longer than the light travel time.

In this Figure we follow the temporal 
evolution of the relevant characteristic 
times for one parcel of gas, located at 
R=1015  cm from the source. It is clear 
that the departure from the equilibrium 
occurs right after the flux is increased 
(t>107  s), where the PI and 
recombination characteristic times 
diverge. 

Equilibrium is not reached again until 
t~109  s, when the propagation time 
becomes shorter than the others. 

In the next two figures we show the resulting temperature (left) and pressure (right) profiles for 
this type of simulation. The gas density obtained from the equilibrium solution is shown in the left 
Figure as black dashed line. The ionization/recombination front found originally near R~1017 cm 
is compensated by sharp increase in the density in order to keep the pressure constant.

As the flux increases the front travels deeper into the cloud, heating the higher density region of 
partly ionized gas. This creates the big pressure spike where the front was located before.

The presence of these fronts in the pressure profiles have important dynamic effects in the cloud. 
If the front travel subsonically, the cloud will adjust its density, but if the front is supersonic shocks 
will be created and the cloud will fragment.

Results – Ionization & Recombination Fronts
We also explore how the fronts propagate under different variations of the illumination source. 
The next 3 Figures show the pressure profiles in the region where an ionization front (IF) is 
formed for the cases where the flux is increased  by factors of f

x
=1.2, 1.5 and 2. The blue dots 

are the location of the front, determined by the inflection point in each curve (most negative value 
for  dP/dR).

Conversely, recombination fronts (RF) are formed and propagate backwards if the original 
ionization flux is decreased, as it is show in the next 3 Figures, which correspond to decreasing 
factors of f

x
=0.8, 0.5 and 0.3. 

With these positions we can then derive the speeds at which the IF's or the RF's propagate 
thought the media. In the last two Figures, we show the speeds for the IF (left) moving forward 
deep into the cloud, and those for the RF (right) which propagate backwards, towards the 
source. Each curve corresponds to a different variation of the ionizing flux. 

In general, we see ionization fronts moving up to speeds of 103 km/s over long periods of time. 
The recombination fronts seem to propagate at much higher speeds (104  km/s), but they live 
short times before the gas reaches equilibrium again. 

In order to simplify an otherwise cumbersome problem, we consider a gas 1-dimensional, 
plane-parallel slab of gas composed entirely of hydrogen. Furthermore, each H atom is 
view as a simple two-level system, i.e., the ground state and the continuum. Thus, no 
excited states are included in these simulations. For the calculation of the level 
populations we include photoionization plus collisional excitation, and radiative 
recombination. Under these assumptions, the level population equation is:
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where n
1/2

 is the population of levels 1/2, n
e
 is the electron density,  is the photoionization 

rate, and   and   are the collisional ionization and radiative recombination coefficients. 
These last two quantities depend on the temperature of the gas, which is determined by 
the energy equation:

dT/dt = 2/(3n
e
k) dQ/dt 

=  –

where  contains the sum of the photoionization and Compton heating, while  is the sum 
of the recombination, Compton and collisional excitation cooling. However, these 
quantities also depend on the local radiation field, given by the well-known radiative 
transfer equation:

1/c dJ/dt + dJ/dR = -k J

where J is the mean intensity of the radiation field, k is the opacity and c the speed of light.
These 3 basic equations are then coupled and solved for each position R and time t. We 
use a finite-difference scheme to integrate the equations implementing the implicit method, 
given the large differences in the relevant characteristic times.

The spatial integration is performed in 1 dimension, thus we are considering a plane-
parallel slab of gas that is s
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