

Effects of an Accretion Disk Wind on the Profile of AGN Emission Lines

by Mike Eracleous **Hélène Flohic** and Tamara Bogdanović

Shameless plug

Poster 2.3

Constraining Accretion Disk Wind Theory with Intrinsic Narrow Absorption Lines by **Drew Clausen**

Poster 2.4

Probing Quasar Winds Using Narrow Intrinsic Absorption Lines by **Chris Culliton**

Effects of an Accretion Disk Wind on the Profile of AGN Emission Lines

by Mike Eracleous **Hélène Flohic** and Tamara Bogdanović

Fig. 1. Response of astronomers to a fashionable new idea.

from McCray, 1979, in "Active Galactic Nuclei," eds. Hazard, C. & Mitton, S. (Cambridge: Cambridge University Press), p.227

Motivation and basic picture

Understanding the BLR

- Broad lines a defining characteristic of AGNs
- Integral part of the accretion flow and wind
- Affects our analysis of intrinsic absorption lines
- Broad lines a tool for getting black hole mass

Motivation and basic picture

Understanding the BLR

- Broad lines a defining characteristic of AGNs
- Integral part of the accretion flow and wind
- Affects our analysis of intrinsic absorption lines
- Broad lines a tool for getting black hole mass

Clues we can use

- Virialized gas motions
- Flattened geometry
- Reverberation
 signature of a
 Keplerian disk

See poster 2.12 by Kelly Denney

Outline

- Put together two previous calculations of emission line profiles from a disk (relativity + radiative transfer).
- Produce a simple model that allows us to scan parameter space efficiently and evaluate the merits of the basic idea.
- Explore the consequences of radiative transfer of line photons through the base of a wind.
- Compare the statistical properties of observed Balmer line profiles with the predictions of the model.

Overal geometry

Methodology

ala Chen & Halpern 1989, ApJ, 344, 115

Structure of line-emitting skin

Approximations for Balmer lines only

- Emission from base of wind (highest n, lowest U)
- Keplerian rotation
- No net outflow but high acceleration
- No electron scattering or resonance scattering.

Directional escape probability & optical depth

$$\beta(\tau_{\nu_e}) = \frac{1 - e^{-\tau_{\nu_e}}}{\tau_{\nu_e}}$$
Following Murray & Chiang
1997, ApJ, 474, 91
$$\left(\tau_{\nu_e}(\xi, \phi') = \frac{\kappa\rho\sigma}{|\hat{\mathbf{n}} \cdot \mathbf{\Lambda} \cdot \hat{\mathbf{n}}|} = \frac{\tau_0 \xi^{3/2 - \eta}}{Q_0}\right)$$

$$Q_0 = \sin^2 i \left(4.7 \cos^2 \phi' + \frac{3}{2} \sin \phi' \cos \phi'\right)$$

$$+ \cos i \left(\frac{4.7 \sin i \cos \phi'}{\sin \lambda} + 4.7 \cos i + \frac{\sin i \sin \phi}{2 \sin \lambda}\right)$$

Bottom line: surface brightness of the disk

Effect of optical depth on line profiles

Comparison with data from Zamfir et al. 2010, MNRAS, 403, 1759

Distribution of line profile asymmetries

Comparison with observed average line profiles

So far, so good, so what?

Ultimately would like to explain all observed trends, (e.g., talk by G. Richards)

Will have to couple profile calculations with photoionization models and SED shapes

- Eventually should use sophisticated models for the disk and its wind.
- Clumpiness and time variability...

figure from Eracleous & Halpern 2003, ApJ, 599, 886

