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Where do NALSs form?

1) Quasar outflows

2) Intervening gas or
galaxies

At v<1000 km/s:

I . : 3) Mass-loaded
3850 4050 quasar flows

l - CIV absorption doublets - 4) Starburst-driven
winds
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Observed Wavelength NALS 1n quasar-
Foltz et al. 1986 driven outflows??




Measure all NALSs in ~2200
SDSS quasars

Huge excess at low v.
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NALs at v < 1000 might be
“environmental” (host halos,
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Others must be quasar outflows! { \ o How can we 1dent1fy
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14% of quasars have at least

one narrow outflow line Nestor et al. 2008

But strong lines only, some higher v NALs are in outflows (Simon talk):
=» True outflow fractions are larger



Outflow NALs at 9700-14,000 km/s (in R~70,000 to 100,000 spectra, Keck, VLT)
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These 5 CIV doublets (A-E) form

0 — —a in a quasar outflow,
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Observed Wavelen|  Qurrounded here by (probably)
unrelated intervening lines

QSO:z~2.3, L~8x10% ergs/s, L/L;~0.4

Hamann et al. 2011
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Formation in a quasar-driven outflow confirmed by:
1) Line variability
2) Smooth “broad” (very super-sonic) line profiles
3) Partial covering of the continuum source

=> “Intrinsic” at speeds much too high for “environmental” gas.

Hamann et al. 2011
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NAL outflow » Outflow speeds ~ 9700 — 14,000 km/s
properties: . FWHMs ~ 62 — 164 km/s
» Coordinated variability in 5 distinct systems (<0.63 yr rest)

» NAL strength changes commensurate with covering factor
changes (~0.35 to 0.2 in CIV)

Hamann et al. 2011




Partial Covering

Lines can be saturated
(1:1 doublet ratios)
but not “black”

if the absorber only
partially covers the
background light source

Scattering
Region

Normalized Flux

-11000

-10500

Requires small structures:
< 0.01 pc for partial covering
of the continuum source

Suggests a location near the
continuum source

Often goes with line variability
and smooth “broad” profiles

=» Quasar outflows
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OVI stronger and
broader than CIV,
and less variable,
in all 5 systems

Lower 10ons not
detected
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Five distinct flow
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kinematics, sizes,
1onizations, locations?
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» Coordinated changes suggest global changing ionization

NAL outflow

properties: » No acceleration, < 3 km/s/yr — coasting freely >~ 5 pc

from SMBH
» Short survival times — within ~5 pc of origin (quasar)
» Max distance ~1 kpc (recombination time)

» Line-lock in A-B-C — driven by radiation pressure,
moving directly toward us (w/in 16°)

Hamann et al. 2011



Changing ionization can change the
covering fraction, without motion,
if the absorber is inhomogeneous
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Continuum

Absorbing
source

clouds
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NAL outflow » Total Ni; ~ 5 x 10" cm™ in all 5 systems

properties: » Kinetic energy too small by >100x for “feedback”

» Metallicty ~2x solar — consistent with
merger-starburst-quasar evolution sequence

Hamann et al. 2011
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These outflow NALs are
~100x narrower and
weaker than BALs, but
with the same speeds,
same 1onization

Also negligible X-ray
absorption

(Just et al. 2007; also Chartas
et al. 2009, Gibson et al. 2010)

BALSs come with strong
X-ray absorption
(Gallagher et al. 2002, 2006)

Possibly enough to “shield”
UV absorber downstream

Possibly needed to
moderate 1onization and
radiatively drive BAL gas
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Is this geometry correct?

The radiative (x-ray) shield might be necessary to moderate the 1onization

and allow radiative acceleration of BAL gas...

But what about the NAL and mini-BAL outflows?
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How are NAL flows driven without a radiative (x-ray) shield?

Curved trajectories? But what is the vertical force? And why do NAL clouds keep

moderate BAL-like ionizations after leaving the shielded BAL environment?

(Radiative shielding is difficult, and maybe not important.)
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to observer

shield

1-D radiative shields will produce
strong absorption lines (at v~0)
unless they are highly 1onized,

but then they are not useful shields!

Opaque shields in stratified
geometries need spatial tuning




Outflow NALs?

Mini-BALs?
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In any case, no x-ray absorption _s, no shield in NAL and mini-BAL outflows

In our luminous quasar, moderate ionization at r ~ 5 pc requires ny ~ 108 cm™3

Which means the flow is in tiny sub-structures with size Ar ~ Ny/ng ~ 101 cm !

Evenatr~ 1kpc, Ar<10% cm and Ar/r<<10°
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[s this geometry correct? (Are these global covering fractions?)

NALs: Simon et al. 2011, Nestor et al. 2008, Misawa et al. 2007
Mini-BALs: Rodriguez Hidalgo 2008 BALs: Hewett et al. 2003
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[s this geometry correct?
Is there evolution: FeLoBAL — BAL — mini-BAL — NAL ??

Low => High ionization (more —> less reddening) ??

What about extended & multi-component flows (diff. structures, same los)?
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Plot above shows 9 CIV doublets,

likely to be an outflow complex 1.2

(partial covering, broad smooth profiles) . W *’W N}NW" — h ‘ | .
oo | \.&M\v” :

This mini-BAL with FHWM ~ 1200 km/s

1s accompanied by NALs with : ; :-
FWHM ~ 150 km/s 0.4f l ]
The whole complex 1s variable h J1020+1039 -

Simon et al. 2011 Observed Wavelength (A)



Outflow complexes like this
(CIV — )
might form on galaxy scales.

High speeds — launch near the
quasar, not the mass loaded
galaxy-wide “blowout”...

Maybe quasar ejecta mixed with
“shreds” from ISM clouds
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In this simulation (Hopkins & Elvis 2010) a hot fast flow creates
pressure dips and instabilities that shred a cool dense ISM cloud




Conclusions:

» Quasar-driven NAL (and mini-BAL) flows appear at same speeds and
1onizations as BAL flows, but ~100 times weaker/narrower.

» NAL flows are a common/important part of the outflow phenomenon
(43% of quasars compared to ~23% for BALSs, 6% for mini-BALSs)

» Wide range in kinematic properties (Simon talk), possibly locations: rich
narrow complexes, single lines, FWHMs merging with “mini-BALSs”

» Probably not (or less) energetically important (for feedback)

» What is the geometry/relationship to BAL and mini-BAL flows?

» Moderate 1onizations near the quasar, without a shield, require high
densities and tiny sub-structures (Ar/r << 1)

» Shielding not needed for radiative acceleration.









