Narrow (UV) Absorption Line
Outflows from Quasars

Fred Hamann
University of Florida

Leah Simon (Berea), Paola Rodriguez Hidalgo (PSU),
Daniel Nestor (UCLA), Dan Capellupo (UF),
Jason Prochaska (UCSD),
Michael Murphy (Swinburne), Max Pettini (IoA)
Outflow Features:

Broad Absorption Lines (BALs)

Observed in 10-23% of optically-selected quasars

Probably present in all quasars (with ~10-23% covering)

Measured flow speeds: a few to >30,000 km/s

$\text{FHWM} / v \sim 1$

Possibly large mass loss rates
Narrow Absorption Lines (NALs):

1) Quasar outflows
2) Intervening gas or galaxies
3) Mass-loaded quasar flows
4) Starburst-driven winds
5) Ambient halo gas
6) Merger remnants

Where do NALs form?

At \(v < 1000 \text{ km/s} \):

- 3) Mass-loaded quasar flows
- 4) Starburst-driven winds
- 5) Ambient halo gas
- 6) Merger remnants

How can we find NALs in quasar-driven outflows??
Measure all NALs in ~2200 SDSS quasars

Huge excess at low v.

NALs at v < 1000 might be “environmental” (host halos, starburst-driven winds)

Assume all lines at very high v are unrelated/intervening

Others must be quasar outflows!

>50% of NALS from 2000-8000 km/s are outflows

14% of quasars have at least one narrow outflow line

How can we identify individual outflow NALs?

But strong lines only, some higher v NALs are in outflows (Simon talk):

⇒ True outflow fractions are larger
Outflow NALs at 9700-14,000 km/s (in R~70,000 to 100,000 spectra, Keck, VLT)

These 5 CIV doublets (A-E) form in a quasar outflow,

Surrounded here by (probably) unrelated intervening lines

QSO: z ~ 2.3, L ~ 8x10^{47} ergs/s, L/L_E ~ 0.4

Hamann et al. 2011
Formation in a quasar-driven outflow confirmed by:

1) Line variability

2) Smooth “broad” (very super-sonic) line profiles

3) Partial covering of the continuum source

→ “Intrinsic” at speeds much too high for “environmental” gas.

Hamann et al. 2011
NAL outflow properties:
- Outflow speeds ~ 9700 – 14,000 km/s
- FWHMs ~ 62 – 164 km/s
- Coordinated variability in 5 distinct systems (<0.63 yr rest)
- NAL strength changes commensurate with covering factor changes (~0.35 to 0.2 in CIV)

Hamann et al. 2011
Partial Covering

Lines can be saturated (1:1 doublet ratios) but not “black” if the absorber only partially covers the background light source.

Requires *small* structures: < 0.01 pc for partial covering of the continuum source.

Suggests a location near the continuum source.

Often goes with line variability and smooth “broad” profiles.

→ Quasar outflows
OVI stronger and broader than CIV, and less variable, in all 5 systems.

Lower ions not detected.
OVI stronger and broader than CIV, and less variable, in all 5 systems

Lower ions not detected

Altogether:

Five distinct flow structures with similar:
kinematics, sizes, ionizations, locations?
Coordinated changes suggest global changing ionization

No acceleration, < 3 km/s/yr → coasting freely >~ 5 pc from SMBH

Short survival times → within ~5 pc of origin (quasar)

Max distance ~1 kpc (recombination time)

Line-lock in A-B-C → driven by radiation pressure, moving directly toward us (w/in 16°)

Hamann et al. 2011
Changing ionization can change the covering fraction, without motion, if the absorber is inhomogeneous.
Observed wavelength (Å)

- Total $N_H \sim 5 \times 10^{19}$ cm$^{-2}$ in all 5 systems
- Kinetic energy too small by $\geq 100x$ for “feedback”
- Metallicity $\sim 2x$ solar \rightarrow consistent with merger-starburst-quasar evolution sequence

NAL outflow properties:

Hamann et al. 2011
These outflow NALs are \(~100\times\) narrower and weaker than BALs, but with the same speeds, same ionization.

Also negligible X-ray absorption

(Just et al. 2007; also Chartas et al. 2009, Gibson et al. 2010)

BALs come with \textit{strong} X-ray absorption

(Gallagher et al. 2002, 2006)

Possibly enough to “shield” UV absorber downstream

Possibly \textit{needed} to moderate ionization and radiatively drive BAL gas
Is this geometry correct?

The radiative (x-ray) shield might be necessary to moderate the ionization and allow radiative acceleration of BAL gas…

But what about the NAL and mini-BAL outflows?
How are NAL flows driven without a radiative (x-ray) shield?

Curved trajectories? But what is the vertical force? And why do NAL clouds keep moderate BAL-like ionizations after leaving the shielded BAL environment?

(Radiative shielding is difficult, and maybe not important.)
1-D radiative shields will produce strong absorption lines (at $\nu \sim 0$) unless they are highly ionized, but then they are not useful shields!

Opaque shields in stratified geometries need spatial tuning.
In any case, no x-ray absorption in NAL and mini-BAL outflows.

In our luminous quasar, moderate ionization at $r \sim 5$ pc requires $n_H \sim 10^8$ cm$^{-3}$

Which means the flow is in *tiny* sub-structures with size $\Delta r \sim N_H/n_H \sim 10^{11}$ cm!

Even at $r \sim 1$ kpc, $\Delta r < 10^{15}$ cm and $\Delta r/r < < 10^{-6}$
Is this geometry correct? (Are these global covering fractions?)

NALs: Simon et al. 2011, Nestor et al. 2008, Misawa et al. 2007
Mini-BALs: Rodriguez Hidalgo 2008
BALs: Hewett et al. 2003

~72% of quasars have a quasar-driven outflow line

Decreasing N_H, M_W xray abs.
Is this geometry correct?

Is there evolution: FeLoBAL \rightarrow BAL \rightarrow mini-BAL \rightarrow NAL ??

Low \rightarrow High ionization (more \rightarrow less reddening) ??

What about extended & multi-component flows (diff. structures, same los)?
This mini-BAL with FHWM ~ 1200 km/s is accompanied by NALs with FWHM ~ 150 km/s.

The whole complex is variable.

Simon et al. 2011

Plot above shows 9 CIV doublets, likely to be an outflow complex (partial covering, broad smooth profiles)
Outflow complexes like this (CIV – partial covering in red) might form on galaxy scales.

High speeds → launch near the quasar, not the mass loaded galaxy-wide “blowout”…

Maybe quasar ejecta mixed with “shreds” from ISM clouds

In this simulation (Hopkins & Elvis 2010) a hot fast flow creates pressure dips and instabilities that shred a cool dense ISM cloud
Conclusions:

- Quasar-driven NAL (and mini-BAL) flows appear at same speeds and ionizations as BAL flows, but ~100 times weaker/narrower.

- NAL flows are a common/important part of the outflow phenomenon (43% of quasars compared to ~23% for BALs, 6% for mini-BALs)

- Wide range in kinematic properties (Simon talk), possibly locations: rich narrow complexes, single lines, FWHMs merging with “mini-BALs”

- Probably not (or less) energetically important (for feedback)

- What is the geometry/relationship to BAL and mini-BAL flows?

- Moderate ionizations near the quasar, without a shield, require high densities and tiny sub-structures ($\Delta r/r < < 1$)

- Shielding not needed for radiative acceleration.