

Technion – Israel Institute of Technology

Lower Limits on the Metallicity of SDSS BALQ Outflows

Alexei Baskin & Ari Laor

AGN Winds in Charleston, October 2011

Outline

A "new" physical process:
Metal enrichment through radiation pressure.
A new method:
Direct lower limit on the metallicity.
Application to SDSS BALQs.

Introduction

Introduction

- Radiation pressure
 - The exerted on metal ions which have only 1% of the gas mass (for Z_{\Box}).
 - Metals coupled to Hydrogen by Coulomb force.
 - Separation of metals from Hydrogen gas in stellar winds was suggested by Springmann & Pauldrach (1992).
 - Can lead to very fast outflow of metals.
 - Is the metal runaway scenario relevant for AGNs?

Introduction

- Radiation pressure
 - The exerted on metal ions which have only 1% of the gas mass (for Z_{\Box}).
 - Metals coupled to Hydrogen by Coulomb force.
 - Separation of metals from Hydrogen gas in stellar winds was suggested by Springmann & Pauldrach (1992).
 - Can lead to very fast outflow of metals.
 - Is the metal runaway scenario relevant for AGNs?
- Metallicity estimates
 - Metallicity is usually estimated based on metal abundance ratio (e.g., NV/CIV).
 - Direct measure requires knowledge of Hydrogen column. Unknown.
 - Can a robust lower limit on the metallicity be placed just using HI column (Lyα absorption)?

Metal Enrichment through Radiation Pressure

ł

Radiative acceleration by line absorption

 $\frac{h}{\lambda_{\rm trans}m_{\rm ion}} \times \frac{f_{\nu}(\lambda_{\rm trans})}{h\nu_{\rm trans}} \cdot A_{12} \frac{\pi e^2}{m_e c} f_{12} \lambda_{\rm trans} \sqrt{\frac{m_{\rm ion}}{2\pi kT}}$

Radiative acceleration by line absorption

 $\times \frac{f_{\nu}(\lambda_{\rm trans})}{h\nu_{\rm trans}} \cdot A_{12} \frac{\pi e^2}{m_e c} f_{12} \lambda_{\rm trans} \sqrt{\frac{m_{\rm ion}}{2\pi kT}}$

per photon

Sunday, November 13, 2011

Radiative acceleration by line absorption

Radiative acceleration by line absorption

Coulomb coupling (deceleration)

 $\sum n_i \frac{4\pi e^4 Z_{\rm ion}^2}{kTm_{\rm ion}} \ln \Lambda G[x_i(v/v_{\rm th},i)]$

(Spitzer 1962)

Sunday, November 13, 2011

For runaway: $\log f_{\nu}(\lambda_{\text{trans}}) > \log n_{\text{H}} - 0.5 \log T - 6$

Direct Lower Limit on the Metallicity

Motivation & Considerations

Motivation & Considerations

Measure directly the minimal N(metal)/N(H).

Take a given metal line and infer the minimal possible Lyα absorption within the same absorber.

 \odot Compare with the observed Ly α absorption.

 \odot If the observed Ly α absorption is weaker, scale-up Z.

Motivation & Considerations

Measure directly the minimal N(metal)/N(H).

- Take a given metal line and infer the minimal possible Ly α absorption within the same absorber.
- \odot Compare with the observed Ly α absorption.
- \odot If the observed Ly α absorption is weaker, scale-up Z.
- Which metal line to use?
 - \oslash Not far in λ from Ly α .
 - Prominent and isolated.

Of relatively low ionization (higher HI/H).

NV 1240	SiII 1263	SiII 1308	OI 1303
CII 1335	SiIV 1397	CIV 1549	AlIII 1857

NV 1240	SiII 1263	SiII 1308	OI 1303
CII 1335	SiIV 1397	CIV 1549	AlIII 1857

NV 1240	Sill 263	SiII 1308	OI 1303
CII 1335	SiIV 1397	CIV 1549	AlIII 1857

NV 1240	Sill 263	Sill 1308	01>1303
CII 1335	SiIV 1397	CIV 1549	AlIII 1857

NV 1240	Sild 263	Sill 1308	01-1303
CI1335	SiIV 1397	CIV 1549	AlIII 1857

NV 1240	Sill 263	SiID 1308	01-1303
CI1335	SiIV 1397	CIV 1549	AIII 1857

Application to SDSS BALQs

- Forming SDSS BALQ sample with strong SiIV absorption:
 - 1. Choosing from DR5 BALQ catalog of Scaringi et al. (2009; N=3552).
 - 2. z>2.7 (leaves N=973).
 - 3. Broad (~3000 km/s) and deep (I<0.5) SiIV absorption (N=139).
 - 4. S/N>1 at SiIV and Ly α troughs (N=78).

- Forming SDSS BALQ sample with strong SiIV absorption:
 - 1. Choosing from DR5 BALQ catalog of Scaringi et al. (2009; N=3552).
 - 2. z>2.7 (leaves N=973).
 - 3. Broad (~3000 km/s) and deep (I<0.5) SiIV absorption (N=139).
 - 4. S/N>1 at SiIV and Ly α troughs (N=78).
- Locate objects which may require high metallicity:
 - 5. Apparent [A](v) cannot fit Ly α absorption (N=13).
 - Similar A(v) may imply CF(v) + saturated absorber => no useful constrain on metallicity.

- Forming SDSS BALQ sample with strong SiIV absorption:
 - 1. Choosing from DR5 BALQ catalog of Scaringi et al. (2009; N=3552).
 - 2. z>2.7 (leaves N=973).
 - 3. Broad (~3000 km/s) and deep (I<0.5) SiIV absorption (N=139).
 - 4. S/N>1 at SiIV and Ly α troughs (N=78).
- Solution Locate objects which may require high metallicity:
 - 5. Apparent [A](v) cannot fit Ly α absorption (N=13).
 - Similar A(v) may imply CF(v) + saturated absorber => no useful constrain on metallicity.
- Additional criteria:
 - 6. Similarity in: profile (N=11), z (N=9), and M_i (N=8).
 - Final sample, N=8: 2.7<z<3.07, -27.7<M_i<-26.2.</p>

A Control Sample

Objects from DR7 quasar catalog of Schneider et al.
 (2010).

BALQs excluded.

⊘ S/N>3.

 \odot Same range of z and M_i as BALQ sample.

 \odot Spectra averaged based on Ly α emission strength.

Composite BALQ + control samples

Sunday, November 13, 2011

Composite BALQ + control samples

Results

Metallicity conservative lower limits:

- Ø 3 objects consistent with Z□ for average control spectrum.
- Ø 2 objects imply Z>Z□, but consistent with Z□ for top-30% control spectrum.
- I object consistent with Z□ only for top-1%.
- O 1 object requires Z>2Z□ even for top-1% control spectrum.

I object has an observed Ly α emission stronger than the top control object (wavelength calibration?).

Sunday, November 13, 2011

			•••	
ELEFENDER UNITER SYMBOLS	by	N(v) CF	locally;	global

Sunday, November 13, 2011

A(v) SET by N_{tot} and b; global CF

Sunday, November 13, 2011

Vmin

Vmin

source abs. 1, v abs. 2, v' $I(v) = [1 - CF(v) + CF(v)e^{-\tau(v)}]$ $\times [1 - CF(v') + CF(v')e^{-\tau(v'/2)}];$ $v' = v - 1940 \text{ km s}^{-1}$

CF

by intot and b; global

Sunday, November 13, 2011

Vmin

Set

Vmin

Single abs. system with b=1000 km/s, N_{tot}(SiIV)=3x10¹⁵ cm⁻², and global CF=0.9.

Single abs. system with b=1000 km/s, N_{tot}(SiIV)=3x10¹⁵ cm⁻², and global CF=0.9.

If global CF=1, $Z>6Z \circ$.

CF(v) model

CF(v) model Partial reconstruction of SiIV emission?

Conclusion & Future Prospects

The metal runaway scenario is theoretically possible for AGNs.

- But, there is (yet) no observational confirmation.
- More theoretical and observational work is needed:
 - Incorporation of the decoupling process in outflow simulations.
 - New high S/N UV observations of z_1 objects:
 - Benefit: smoother Lyα profiles and less intervening Lyα absorption.
 - Select candidates based on a prominent AlIII 1857 absorption observed from the ground.