Narrow Absorption Line Outflows in high-z Environments

Leah Simon AGN Winds in Charleston October 15, 2011

Survey Goals

- Identify intrinsic narrow absorption lines (NALs) in quasar spectra
- Study origin of intrinsic NALs to understand quasar environments, specifically find NALs in quasar outflows
- Characterize basic properties of intrinsic NALs, especially quasar outflow NALs
- Characterize NAL outflows in the broader context of all quasar outflows

Typical quasar spectrum

Typical quasar spectrum

C IV Narrow Absorption Lines: Groups

C IV Narrow Absorption Lines: Groups

24 quasars with spectra: resolution ~ 7 km s⁻¹

24 quasars with spectra: resolution ~ 7 km s⁻¹

 observed during 2003-2008 with Keck (HIRES), VLT (UVES), Magellan (MIKE)

24 quasars with spectra: resolution ~ 7 km s⁻¹

- observed during 2003-2008 with Keck (HIRES), VLT (UVES), Magellan (MIKE)
- selected to have ≥ 1 low-v NAL system in existing lower resolution spectra

24 quasars with spectra: resolution ~ 7 km s⁻¹

- observed during 2003-2008 with Keck (HIRES), VLT (UVES), Magellan (MIKE)
- selected to have ≥ 1 low-v NAL system in existing lower resolution spectra
- 8 z > 4, 10 3 < z < 4, 3 2.5 < z < 3
 z > 2.5 for H I Lyman-series coverage

24 quasars with spectra: resolution ~ 7 km s⁻¹

- observed during 2003-2008 with Keck (HIRES), VLT (UVES), Magellan (MIKE)
- selected to have ≥ 1 low-v NAL system in existing lower resolution spectra
- 8 z > 4, 10 3 < z < 4, 3 2.5 < z < 3
 z > 2.5 for H I Lyman-series coverage

• 271/136 Absorption Line Components/Systems

High resolution data

 Black is Magellan/ Keck data
 Red is SDSS

Diagnostics

Covering Fraction $(C_{f,v})$ $\Gamma_{v} = I_{0,v}e^{-\tau_{v}} = 0$ $\Gamma_{v} = I_{0,v}e^{-\tau_{v}} \neq 0$

> If not accounted for, surplus I_v artificially decreases τ_v , N

C_{f,v} < 1 means small clouds, probably very near continuum source!

Diagnostics

Broad and Smooth vs. Narrow and Sharp Covering Fraction ($C_{f,v}$) $C_{f,v}=1$ $\tau_v >> 1$ $C_{f,v}<1$

$$I_v = I_{0,v} e^{-\tau_v} = 0$$
 $I_v = I_{0,v} e^{-\tau_v} \neq 0$

If not accounted for, surplus I_v artificially decreases τ_v , N

C_{f,v} < 1 means small clouds, probably very near continuum source!

Diagnostics

Class A: Intrinsic Class B: Probably Intrinsic Class C: Everything else

> Line Shape and Strength

Broad and Smooth vs. Narrow and Sharp $\begin{aligned} C_{f,v}=1, \tau_{v} >> 1 \\ C_{f,v}<1, \tau_{v} <> 1 \\ C_{f,v}<1, \tau_{v} < 1 \\ C_{f,v}<1, \tau_{v}$

Covering Fraction ($C_{f,v}$)

If not accounted for, surplus I_v artificially decreases τ_v , N

C_{f,v} < 1 means small clouds, probably very near continuum source!

Line Shape and Strength

$b < 60 \text{ km s}^{-1}$: Class C

60 < b < 80 km s⁻¹: Class B

 $b > 80 \text{ km s}^{-1}$: Class A

Point by Point Covering Fractions

Simon & Hamann 2010, MNRAS 409: 269S

Sunday, November 13, 2011

Point by Point and τ -ratio predicted C_f

Continuum Fitting

Velocity Shift (km s⁻¹)

Velocity Shift (km s

Sunday, November 13, 2011

NAL Overview

Solid black symbols are intrinsic NALs

Open diamonds are intervening or ambiguous origin NALs

NALs by velocity shift

NALs by velocity shift

Intrinsic Fractions

 $v < 5000 \text{ km s}^{-1}$: 30% $v < 12,000 \text{ km s}^{-1}$: 25% $v < 40,000 \text{ km s}^{-1}$: 20% $v > 5000 \text{ km s}^{-1}$: 10-15%

Intrinsic Fractions

 $v < 5000 \text{ km s}^{-1}$: 30% $v < 12,000 \text{ km s}^{-1}$: 25% $v < 40,000 \text{ km s}^{-1}$: 20% $v > 5000 \text{ km s}^{-1}$: 10-15%

Intrinsic Fractions

 $v < 5000 \text{ km s}^{-1}$: 30% $v < 12,000 \text{ km s}^{-1}$: 25% $v < 40,000 \text{ km s}^{-1}$: 20% $v > 5000 \text{ km s}^{-1}$: 10-15%

Column Density

Equivalent Width

Class A mean: 0.20 Å (0.50 Å)

Class C: 0.12 Å (0.26 Å)

Equivalent Width

Class A mean: 0.20 Å (0.50 Å)

Class C: 0.12 Å (0.26 Å)

Class A and C NALs look very much alike! Very large REW more likely intrinsic

Doppler Width

Class A mean: 34 km s⁻¹ Class C mean: 21 km s⁻¹

30% in class A for 30 < b < 60 km s⁻¹ only 10% in class A for b < 30 km s⁻¹

Intrinsic and 'other' NALs look very similar

Sunday, November 13, 2011

Doppler Width

Class A mean: 34 km s⁻¹ Class C mean: 21 km s⁻¹

30% in class A for 30 < b < 60 km s⁻¹ only 10% in class A for b < 30 km s⁻¹

Sunday, November 13, 2011

NALs per quasar

46% of quasars have 1+ NAL below 40,000 km s⁻¹.

29% of quasars have I+ NAL above 5000 km s⁻¹.

These are outflows!

NALs per quasar

High Velocity Outflows

Solid Evidence (Class A

Inconclusive Evidence (Class C)

"Rich" NAL Complexes

Broad(ish) absorption

Sunday, November 13, 2011

20% of NALs at all velocities are intrinsic in this study
intrinsic NALs undercounted, esp. at low velocity

- 20% of NALs at all velocities are intrinsic in this study
 intrinsic NALs undercounted, esp. at low velocity
- Intrinsic fraction largest (30%) at lower velocities, above lowest velocities, 10-15% intrinsic--not 0%!

- 20% of NALs at all velocities are intrinsic in this study
 intrinsic NALs undercounted, esp. at low velocity
- Intrinsic fraction largest (30%) at lower velocities, above lowest velocities, 10-15% intrinsic--not 0%!
- >60-77% of intrinsic NALs appear in outflows

- 20% of NALs at all velocities are intrinsic in this study
 intrinsic NALs undercounted, esp. at low velocity
- Intrinsic fraction largest (30%) at lower velocities, above lowest velocities, 10-15% intrinsic--not 0%!
- >60-77% of intrinsic NALs appear in outflows
- Intrinsic gas tends to have larger N, b, REW
 - many intrinsic NALs look just like intervening gas!

- 20% of NALs at all velocities are intrinsic in this study
 intrinsic NALs undercounted, esp. at low velocity
- Intrinsic fraction largest (30%) at lower velocities, above lowest velocities, 10-15% intrinsic--not 0%!
- >60-77% of intrinsic NALs appear in outflows
- Intrinsic gas tends to have larger N, b, REW
 - many intrinsic NALs look just like intervening gas!
- Combine NAL, BAL, mini-BAL outflows: ~72% of quasar spectra contain at least one outflow!
 - orientation, lifetime, or combination...?

- 20% of NALs at all velocities are intrinsic in this study
 intrinsic NALs undercounted, esp. at low velocity
- Intrinsic fraction largest (30%) at lower velocities, above lowest velocities, 10-15% intrinsic--not 0%!
- >60-77% of intrinsic NALs appear in outflows
- Intrinsic gas tends to have larger N, b, REW
 - many intrinsic NALs look just like intervening gas!
- Combine NAL, BAL, mini-BAL outflows: ~72% of quasar spectra contain at least one outflow!
 - orientation, lifetime, or combination...?
- High velocity-outflows: how can they exist?

- 20% of NALs at all velocities are intrinsic in this study
 intrinsic NALs undercounted, esp. at low velocity
- Intrinsic fraction largest (30%) at lower velocities, above lowest velocities, 10-15% intrinsic--not 0%!
- >60-77% of intrinsic NALs appear in outflows
- Intrinsic gas tends to have larger N, b, REW
 - many intrinsic NALs look just like intervening gas!
- Combine NAL, BAL, mini-BAL outflows: ~72% of quasar spectra contain at least one outflow!
 - orientation, lifetime, or combination...?
- High velocity-outflows: how can they exist?
- Rich NAL complexes --where do these highly structured, multicomponent outflows come from?

Sample Data

Intrinsic Ionization

Intrinsic Column Density

