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Figure 2. Cross-section slice of gas density in the x − y plane through z = 0 of Run 4 at time t = 0.25tB = 0.2 × 104 yr, overplotted
with the velocity vector arrows.
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Figure 3. Mass inflow rate at the inner boundary as a function of time for the first eight runs in Table 1. Each panel has a different outer
radius: rout = 5 (top-left), 10 (top-right), 20 (bottom-left), 50 pc (bottom-right), as the time coverage becomes longer. The top-right
panel shows different particle numbers: N = 643 (Run 05) and 1283 (Run 06) for the Bondi IC. In addition, the top row and bottom-right
panels show the results of the Bondi IC (Runs 04, 05, 06, 08), together with the uniform IC runs (Runs 01, 02, 03). The Bondi mass
accretion rate (marked as the dash-dot-dot-dot horizontal line in each panel) is reproduced for a limited time duration.
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Figure 1. Cross-sections in Run 26 (LX/LEdd = 0.01) showing the inner 30 pc of the [x−y] plane through z = 0 at a time t = 2.047 Myr.
The gas density is in the top-left panel, temperature in the top-right, photoionization parameter in the bottom-left, and Mach number
in the bottom-right, overplotted with the velocity vector arrows. It shows colder, denser filament-like structures, with hotter, less-dense
gas in between, both components accreting in (with the colder phase moving in faster), all of which has been caused by non-spherical
cooling and fragmentation. This and all the other cross-section images in this paper have been generated using SPLASH (Price 2007).
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Figure 2. Zoom-in of the inner 4 pc of the [x−y] plane through z = 0 at a time t = 2.047 Myr in Run 26 (LX/LEdd = 0.01). The panels
represent gas density in the top-left, temperature in the top-right, photoionization parameter in the bottom-left, and Mach number in
the bottom-right. It shows stretching of the colder clumps as they fall in toward the center. They remain denser, however get heated up
at r < 1 pc, mostly by adiabatic compression. Note that the color scheme in this cross-section has been changed and it has been plotted
without the velocity vectors, in order to show the small-scale features clearly.
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Motivation

• Still a large gap btw small-scale sims & cosmological sims.  

• Cosmo sims uses ad-hoc AGN accretion models as “sub-grid” physics.

• How well can a cosmological SPH code (e.g. GADGET) handle accretion 
onto a SMBH?

There are two definitions of the photoionization parameter
used in literature: ! and U (e.g., Krolik 1999). The former is
based on the ionizing flux, while the latter is based on the
number density of the ionizing photons. For the adopted spec-
tral energy distribution, the conversion between the two is
logU ¼ log ! " 1 � 75.

Our computational domain is defined to occupy the radial
range ri ¼ 10r# $ r $ ro ¼ 500r# and the angular range 0% $
" $ 90%. The r " " domain is discretized into zones. Our nu-
merical resolution consists of 100 and 140 zones in the r and
" directions, respectively. We use fixed zone size ratios,
drkþ1 � drk ¼ 1 � 05 and d"l � d"lþ1 ¼ 1 � 066.

3.1. Two-Component Disk Wind Solution

Figure 1 shows the instantaneous density, temperature, and
photoionization parameter distributions, and the poloidal velocity
field of the model. The wind speed at the outer boundary is 2000–
12,000 km s"1. This corresponds to a dynamical time of '0.2 yr

for the material at " P 60%. Figure 1 shows results at the end of
the simulation after 6.5 yr. Although the flow is still weakly time-
dependent after this time has elapsed, the gross properties of the
flow (e.g., the mass-loss rate and the radial velocity at the outer
boundary) settle down to steady time averages. As in the flow
found by PSK00, the wind has three components: (1) a hot, low-
density flow in the polar region (2) a dense, warm, and fast
equatorial outflow from the disk, and (3) a transitional zone in
which the disk outflow is hot and struggles to escape the system.
The main difference from the results of PSK00 is that here the
transitional zone is much more prominent, and it occupies a large
fraction of the computational domain.
In the polar region, the density is very small and close to the

lower limit that we set on the grid, i.e., #min ¼ 10"20 g cm"3.
The line force is negligible because the matter is highly ion-
ized, as indicated by a very large photoionization parameter
('108). The gas temperature is close to the Compton temper-
ature of the X-radiation. The matter in the polar region is pulled

Fig. 1.—Top left: Color density map of the AGN disk wind model, described in the text. Top ri� ht: Color gas temperature map of the model. Bottom left: Color
photoionization parameter map. Bottom ri� ht: Map of the velocity field ( poloidal component only). In all panels the rotation axis of the disk is along the left-hand
vertical frame, while the midplane of the disk is along the lower horizontal frame.
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Figure 5. Successively zoomed projections of the gas density in a 3 Mpc � −1 thick slice from our � 100� 512 simulation at redshift zero. BHs are represented
in this plot by open circles and the area of each circle is proportional to the logarithm of the BH mass. The largest circle in the lower-left panel represents a BH
of mass 3 × 107 M#.

the effects of changes in each of these parameter sets, and addi-
tionally consider two purely numerical effects: the simulation mass
resolution and box size. For each set of simulations, we make four
diagnostic plots: in Fig. 6, we show the cosmic SFR density as a
function of redshift; Fig. 7 shows the evolution of the global BH
density, and the cumulative BH density present in seed-mass BHs
(grey curves); Fig. 8 shows the redshift zero � BH–� ∗ and � BH–σ

relations. We associate BHs with gravitationally bound objects by
identifying bound substructures in the simulation using the algo-
rithm SUBFIND (Springel et al. 2001b; Dolag et al. 2008). We note
that in this plot we show total halo stellar mass as a function of
BH mass, as opposed to the observations, where only the bulge
stellar mass is calculated. This means that all curves can be shifted
slightly to the left. Finally, Fig. 9 shows the median-specific SFR
(SSFR) in bins of stellar mass. In this plot, the grey lines repre-
sent results from simulations that do not include AGN feedback. In
Figs 8 and 9, the vertical lines represent the halo stellar masses with
50 per cent and 90 per cent of haloes containing BHs massive
enough to have performed at least one heating event. It is immedi-
ately clear from Fig. 8 that the � BH–σ relation is much more robust
to changes in parameters than the � BH–� ∗ relation.

Each set of simulations is compared to our fiducial simulation
(L050N256), which uses the model parameters that were justified
in Section 4. To aid comparison between the different simulation

sets, the fiducial simulation appears in every plot as a solid, black
curve. Details of all the simulations discussed in this section appear
in Table 3. We now discuss each simulation set in turn.

5.2.1 The effect of box size and mass resolution

We consider first the effect of changing the box size at a con-
stant resolution by comparing models L100N512, L050N256 and
L025N128. The size of the simulation box has a negligible effect on
both the SFR density (Fig. 6a) and, for � � 4, on the global mass
of BHs (Fig. 7a). Because the properties of individual BHs are set
by local physical processes, increasing the box size does nothing to
the scaling relations (Fig. 8a), except for allowing us to probe the
mass function up to larger halo masses. The same holds true for the
SSFRs of individual objects (Fig. 9a).

We now assess the impact of numerical resolution on our results.
We compare simulations at three different resolutions (L100N512,
L100N256 and L100N128), both with and without AGN feedback.
Simulation � 100� 128 has a dark matter particle mass of 3.54 ×
1010 M#, a factor of 64 worse than that used in L050N256, our
lowest resolution production simulation.

We concentrate first on the SF history in these simulations
(Fig. 6b). At high redshift (� � 4), the SFR is governed by
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The Bondi Accretion Problem

• Spherically symmetric accretion onto a central mass  (Bondi 1952)

• Gas is at rest at infinity, with ρ∞ & p∞.  Increase in the central mass is ignored. 

• Two equations are solved:

SPH Simulations of BH Accretion 3

merical method and simulation setup in §2. We present and
discuss the results in §3. We summarise and conclude in §4.

2 NUMERICAL METHOD

2.1 Revisiting the Bondi Problem

The problem of spherically symmetric accretion onto a cen-
tral mass was analysed in the seminal work by Bondi (1952).
It describes a central star at rest in a cloud of gas. The gas is
at rest at infinity, where it is parametrised by uniform den-
sity ρ∞ and pressure p∞. The motion of the gas is steady
and spherically symmetrical as it accretes onto the central
star. The increase in mass of the star is ignored, so that the
force field remains constant. The gas pressure p and density
ρ are related by the polytropic equation of state, p ∝ ργ ,
with the adiabatic index satisfying 1 ! γ ! 5/3.

Two equations are solved for the gas motion to obtain
the velocity v and density as a function of radius r. First,
the equation of mass continuity,

Ṁ = −4πr2ρv = constant. (1)

where Ṁ is the mass accretion rate. Second, the Bernoulli’s
equation, which reduces to

v2

2
+

(

γ
γ − 1

)

p∞

ρ∞

[

(

ρ
ρ∞

)γ−1

− 1

]

=
GMBH

r
, (2)

where the right-hand-side represents a Newtonian gravita-
tional potential of the central star, which is a BH for our
case. Several types of solution are possible (Figure 2 of Bondi
1952); the one relevant for astrophysical accretion is the so-
called critical solution. In this solution, gas is subsonic in
the outer parts, passes through a sonic point, and accretes
onto the central object with a supersonic velocity. The mass
accretion rate for such a motion is

ṀB = 4πλc
(GMBH)2

c3
s,∞

ρ∞, (3)

with

λc =
(

1
2

)

(γ+1)
2(γ−1)

(

5 − 3γ
4

)

(3γ−5)
2(γ−1)

. (4)

Here cs =
√

γkBT/ (µmp) is the sound speed in the gas
of temperature T and mean molecular weight µ. Solving
Eqs. (1) and (2) gives the density and velocity of the Bondi
solution, which we denote as ρB(r) and vB(r).

This analysis gives a characteristic length scale, the
Bondi radius,

RB =
GMBH

c2
s,∞

. (5)

The location of the sonic point can be expressed analytically
as

Rs =
(

5 − 3γ
4

)

RB . (6)

An important timescale is the sound crossing time from a
distance RB to the center (the Bondi time):

tB =
RB

cs
=

GMBH

c3
s,∞

. (7)

The latter equality in Eq. (7) is for an isothermal case. These
equations are for a purely Newtonian gravitational potential
(Eq. 2). As γ → 5/3, the sonic radius asymptotically goes
to zero (Rs → 0), i.e., there is no relevant sonic point.

However, for a problem of BH accretion the general-
relativistic gravitational field differs from the Newtonian
form at very small radii. The pseudo-Newtonian Paczynsky-
Wiita potential (which we describe in §2.2, Eq. 8) can cap-
ture the relativistic effects well. For the Paczynsky-Wiita
potential as well as for the fully general-relativistic problem
(Begelman 1978), the Bondi flow with γ = 5/3 has a sonic
point at roughly the geometrical mean of the Bondi radius
and the Schwarzschild radius (see also Proga & Begelman
2003a).

2.2 Model Setup

Our simulation setup consists of a spherical distribution of
gas accreting onto a central SMBH with a mass of MBH =
108M#. The inner and outer radii of our computational vol-
ume are chosen such that the Bondi and sonic radii lie well
within our simulation domain. We choose the inner radius of
rin = 0.1 pc, which is at least an order of magnitude smaller
than the values of Rs we explored. The outer radius is var-
ied depending on the other model parameter values, and we
explore a range of rout = 5 − 200 pc.

We use the 3D Tree-PM Smoothed Particle Hydrody-
namics code GADGET-3 (originally described in Springel
2005). There are only gas particles in our simulations, be-
cause our outer radius goes only up to 5 − 200 pc, and the
dark matter density is much lower than the gas density in
the central 10’s - 100 pc of a galaxy.

The central SMBH is represented by the pseudo-
Newtonian potential given by Paczynsky & Wiita (1980):

ΨPW = −
GMBH

r − Rg
, with Rg =

2GMBH

c2
. (8)

Here Rg is the gravitational radius of the BH. In our sim-
ulations, Rg = 2.96 × 1013 cm = 9.57 × 10−6 pc; there-
fore the Paczynsky-Wiita potential is essentially Newtonian
within our computational domain. This is represented in the
GADGET code by a “static potential” approach, with the
following acceleration added to each particle,

%aPW = −
GMBH

(r − Rg)2
r̂. (9)

We also tested the effect of adding a galaxy bulge poten-
tial in our simulation, which is described in §3.1.2. In our
simulations we set the gravitational softening length of gas
to values in the range 0.005 − 0.02 pc. The minimum gas
smoothing length is set to 0.1 of the softening lengths, which
is 0.0005 − 0.002 pc.

2.3 Initial and Boundary Conditions

We start with a spherical distribution of particles between
rin and rout, distributed according to the initial profiles of
density ρinit(r), velocity vinit(r), and temperature Tinit(r).
For most of our runs the initial profiles are taken from the
Bondi solution, which is parametrised by the density ρ∞ and
temperature T∞ at infinity. The initial conditions (ICs) are
generated using an adiabatic index γinit, and the simulations
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merical method and simulation setup in §2. We present and
discuss the results in §3. We summarise and conclude in §4.
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The problem of spherically symmetric accretion onto a cen-
tral mass was analysed in the seminal work by Bondi (1952).
It describes a central star at rest in a cloud of gas. The gas is
at rest at infinity, where it is parametrised by uniform den-
sity ρ∞ and pressure p∞. The motion of the gas is steady
and spherically symmetrical as it accretes onto the central
star. The increase in mass of the star is ignored, so that the
force field remains constant. The gas pressure p and density
ρ are related by the polytropic equation of state, p ∝ ργ ,
with the adiabatic index satisfying 1 ! γ ! 5/3.

Two equations are solved for the gas motion to obtain
the velocity v and density as a function of radius r. First,
the equation of mass continuity,

Ṁ = −4πr2ρv = constant. (1)

where Ṁ is the mass accretion rate. Second, the Bernoulli’s
equation, which reduces to

v2

2
+

(

γ
γ − 1

)

p∞

ρ∞

[

(

ρ
ρ∞

)γ−1

− 1

]

=
GMBH

r
, (2)

where the right-hand-side represents a Newtonian gravita-
tional potential of the central star, which is a BH for our
case. Several types of solution are possible (Figure 2 of Bondi
1952); the one relevant for astrophysical accretion is the so-
called critical solution. In this solution, gas is subsonic in
the outer parts, passes through a sonic point, and accretes
onto the central object with a supersonic velocity. The mass
accretion rate for such a motion is

ṀB = 4πλc
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Here cs =
√

γkBT/ (µmp) is the sound speed in the gas
of temperature T and mean molecular weight µ. Solving
Eqs. (1) and (2) gives the density and velocity of the Bondi
solution, which we denote as ρB(r) and vB(r).

This analysis gives a characteristic length scale, the
Bondi radius,

RB =
GMBH

c2
s,∞

. (5)

The location of the sonic point can be expressed analytically
as

Rs =
(

5 − 3γ
4

)

RB . (6)

An important timescale is the sound crossing time from a
distance RB to the center (the Bondi time):

tB =
RB

cs
=

GMBH

c3
s,∞

. (7)

The latter equality in Eq. (7) is for an isothermal case. These
equations are for a purely Newtonian gravitational potential
(Eq. 2). As γ → 5/3, the sonic radius asymptotically goes
to zero (Rs → 0), i.e., there is no relevant sonic point.

However, for a problem of BH accretion the general-
relativistic gravitational field differs from the Newtonian
form at very small radii. The pseudo-Newtonian Paczynsky-
Wiita potential (which we describe in §2.2, Eq. 8) can cap-
ture the relativistic effects well. For the Paczynsky-Wiita
potential as well as for the fully general-relativistic problem
(Begelman 1978), the Bondi flow with γ = 5/3 has a sonic
point at roughly the geometrical mean of the Bondi radius
and the Schwarzschild radius (see also Proga & Begelman
2003a).

2.2 Model Setup

Our simulation setup consists of a spherical distribution of
gas accreting onto a central SMBH with a mass of MBH =
108M#. The inner and outer radii of our computational vol-
ume are chosen such that the Bondi and sonic radii lie well
within our simulation domain. We choose the inner radius of
rin = 0.1 pc, which is at least an order of magnitude smaller
than the values of Rs we explored. The outer radius is var-
ied depending on the other model parameter values, and we
explore a range of rout = 5 − 200 pc.

We use the 3D Tree-PM Smoothed Particle Hydrody-
namics code GADGET-3 (originally described in Springel
2005). There are only gas particles in our simulations, be-
cause our outer radius goes only up to 5 − 200 pc, and the
dark matter density is much lower than the gas density in
the central 10’s - 100 pc of a galaxy.

The central SMBH is represented by the pseudo-
Newtonian potential given by Paczynsky & Wiita (1980):

ΨPW = −
GMBH

r − Rg
, with Rg =

2GMBH

c2
. (8)

Here Rg is the gravitational radius of the BH. In our sim-
ulations, Rg = 2.96 × 1013 cm = 9.57 × 10−6 pc; there-
fore the Paczynsky-Wiita potential is essentially Newtonian
within our computational domain. This is represented in the
GADGET code by a “static potential” approach, with the
following acceleration added to each particle,

%aPW = −
GMBH

(r − Rg)2
r̂. (9)

We also tested the effect of adding a galaxy bulge poten-
tial in our simulation, which is described in §3.1.2. In our
simulations we set the gravitational softening length of gas
to values in the range 0.005 − 0.02 pc. The minimum gas
smoothing length is set to 0.1 of the softening lengths, which
is 0.0005 − 0.002 pc.

2.3 Initial and Boundary Conditions

We start with a spherical distribution of particles between
rin and rout, distributed according to the initial profiles of
density ρinit(r), velocity vinit(r), and temperature Tinit(r).
For most of our runs the initial profiles are taken from the
Bondi solution, which is parametrised by the density ρ∞ and
temperature T∞ at infinity. The initial conditions (ICs) are
generated using an adiabatic index γinit, and the simulations
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merical method and simulation setup in §2. We present and
discuss the results in §3. We summarise and conclude in §4.
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force field remains constant. The gas pressure p and density
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the velocity v and density as a function of radius r. First,
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equations are for a purely Newtonian gravitational potential
(Eq. 2). As γ → 5/3, the sonic radius asymptotically goes
to zero (Rs → 0), i.e., there is no relevant sonic point.

However, for a problem of BH accretion the general-
relativistic gravitational field differs from the Newtonian
form at very small radii. The pseudo-Newtonian Paczynsky-
Wiita potential (which we describe in §2.2, Eq. 8) can cap-
ture the relativistic effects well. For the Paczynsky-Wiita
potential as well as for the fully general-relativistic problem
(Begelman 1978), the Bondi flow with γ = 5/3 has a sonic
point at roughly the geometrical mean of the Bondi radius
and the Schwarzschild radius (see also Proga & Begelman
2003a).

2.2 Model Setup

Our simulation setup consists of a spherical distribution of
gas accreting onto a central SMBH with a mass of MBH =
108M#. The inner and outer radii of our computational vol-
ume are chosen such that the Bondi and sonic radii lie well
within our simulation domain. We choose the inner radius of
rin = 0.1 pc, which is at least an order of magnitude smaller
than the values of Rs we explored. The outer radius is var-
ied depending on the other model parameter values, and we
explore a range of rout = 5 − 200 pc.

We use the 3D Tree-PM Smoothed Particle Hydrody-
namics code GADGET-3 (originally described in Springel
2005). There are only gas particles in our simulations, be-
cause our outer radius goes only up to 5 − 200 pc, and the
dark matter density is much lower than the gas density in
the central 10’s - 100 pc of a galaxy.

The central SMBH is represented by the pseudo-
Newtonian potential given by Paczynsky & Wiita (1980):

ΨPW = −
GMBH
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, with Rg =
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Here Rg is the gravitational radius of the BH. In our sim-
ulations, Rg = 2.96 × 1013 cm = 9.57 × 10−6 pc; there-
fore the Paczynsky-Wiita potential is essentially Newtonian
within our computational domain. This is represented in the
GADGET code by a “static potential” approach, with the
following acceleration added to each particle,

%aPW = −
GMBH

(r − Rg)2
r̂. (9)

We also tested the effect of adding a galaxy bulge poten-
tial in our simulation, which is described in §3.1.2. In our
simulations we set the gravitational softening length of gas
to values in the range 0.005 − 0.02 pc. The minimum gas
smoothing length is set to 0.1 of the softening lengths, which
is 0.0005 − 0.002 pc.

2.3 Initial and Boundary Conditions

We start with a spherical distribution of particles between
rin and rout, distributed according to the initial profiles of
density ρinit(r), velocity vinit(r), and temperature Tinit(r).
For most of our runs the initial profiles are taken from the
Bondi solution, which is parametrised by the density ρ∞ and
temperature T∞ at infinity. The initial conditions (ICs) are
generated using an adiabatic index γinit, and the simulations
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force field remains constant. The gas pressure p and density
ρ are related by the polytropic equation of state, p ∝ ργ ,
with the adiabatic index satisfying 1 ! γ ! 5/3.

Two equations are solved for the gas motion to obtain
the velocity v and density as a function of radius r. First,
the equation of mass continuity,

Ṁ = −4πr2ρv = constant. (1)

where Ṁ is the mass accretion rate. Second, the Bernoulli’s
equation, which reduces to

v2

2
+

(

γ
γ − 1

)

p∞

ρ∞

[

(

ρ
ρ∞

)γ−1

− 1

]

=
GMBH

r
, (2)

where the right-hand-side represents a Newtonian gravita-
tional potential of the central star, which is a BH for our
case. Several types of solution are possible (Figure 2 of Bondi
1952); the one relevant for astrophysical accretion is the so-
called critical solution. In this solution, gas is subsonic in
the outer parts, passes through a sonic point, and accretes
onto the central object with a supersonic velocity. The mass
accretion rate for such a motion is

ṀB = 4πλc
(GMBH)2

c3
s,∞

ρ∞, (3)

with

λc =
(

1
2

)

(γ+1)
2(γ−1)

(

5 − 3γ
4

)

(3γ−5)
2(γ−1)

. (4)

Here cs =
√

γkBT/ (µmp) is the sound speed in the gas
of temperature T and mean molecular weight µ. Solving
Eqs. (1) and (2) gives the density and velocity of the Bondi
solution, which we denote as ρB(r) and vB(r).

This analysis gives a characteristic length scale, the
Bondi radius,

RB =
GMBH

c2
s,∞

. (5)

The location of the sonic point can be expressed analytically
as

Rs =
(

5 − 3γ
4

)

RB . (6)

An important timescale is the sound crossing time from a
distance RB to the center (the Bondi time):

tB =
RB

cs
=

GMBH

c3
s,∞

. (7)

The latter equality in Eq. (7) is for an isothermal case. These
equations are for a purely Newtonian gravitational potential
(Eq. 2). As γ → 5/3, the sonic radius asymptotically goes
to zero (Rs → 0), i.e., there is no relevant sonic point.

However, for a problem of BH accretion the general-
relativistic gravitational field differs from the Newtonian
form at very small radii. The pseudo-Newtonian Paczynsky-
Wiita potential (which we describe in §2.2, Eq. 8) can cap-
ture the relativistic effects well. For the Paczynsky-Wiita
potential as well as for the fully general-relativistic problem
(Begelman 1978), the Bondi flow with γ = 5/3 has a sonic
point at roughly the geometrical mean of the Bondi radius
and the Schwarzschild radius (see also Proga & Begelman
2003a).

2.2 Model Setup

Our simulation setup consists of a spherical distribution of
gas accreting onto a central SMBH with a mass of MBH =
108M#. The inner and outer radii of our computational vol-
ume are chosen such that the Bondi and sonic radii lie well
within our simulation domain. We choose the inner radius of
rin = 0.1 pc, which is at least an order of magnitude smaller
than the values of Rs we explored. The outer radius is var-
ied depending on the other model parameter values, and we
explore a range of rout = 5 − 200 pc.

We use the 3D Tree-PM Smoothed Particle Hydrody-
namics code GADGET-3 (originally described in Springel
2005). There are only gas particles in our simulations, be-
cause our outer radius goes only up to 5 − 200 pc, and the
dark matter density is much lower than the gas density in
the central 10’s - 100 pc of a galaxy.

The central SMBH is represented by the pseudo-
Newtonian potential given by Paczynsky & Wiita (1980):

ΨPW = −
GMBH

r − Rg
, with Rg =

2GMBH

c2
. (8)

Here Rg is the gravitational radius of the BH. In our sim-
ulations, Rg = 2.96 × 1013 cm = 9.57 × 10−6 pc; there-
fore the Paczynsky-Wiita potential is essentially Newtonian
within our computational domain. This is represented in the
GADGET code by a “static potential” approach, with the
following acceleration added to each particle,

%aPW = −
GMBH

(r − Rg)2
r̂. (9)

We also tested the effect of adding a galaxy bulge poten-
tial in our simulation, which is described in §3.1.2. In our
simulations we set the gravitational softening length of gas
to values in the range 0.005 − 0.02 pc. The minimum gas
smoothing length is set to 0.1 of the softening lengths, which
is 0.0005 − 0.002 pc.

2.3 Initial and Boundary Conditions

We start with a spherical distribution of particles between
rin and rout, distributed according to the initial profiles of
density ρinit(r), velocity vinit(r), and temperature Tinit(r).
For most of our runs the initial profiles are taken from the
Bondi solution, which is parametrised by the density ρ∞ and
temperature T∞ at infinity. The initial conditions (ICs) are
generated using an adiabatic index γinit, and the simulations
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merical method and simulation setup in §2. We present and
discuss the results in §3. We summarise and conclude in §4.

2 NUMERICAL METHOD

2.1 Revisiting the Bondi Problem

The problem of spherically symmetric accretion onto a cen-
tral mass was analysed in the seminal work by Bondi (1952).
It describes a central star at rest in a cloud of gas. The gas is
at rest at infinity, where it is parametrised by uniform den-
sity ρ∞ and pressure p∞. The motion of the gas is steady
and spherically symmetrical as it accretes onto the central
star. The increase in mass of the star is ignored, so that the
force field remains constant. The gas pressure p and density
ρ are related by the polytropic equation of state, p ∝ ργ ,
with the adiabatic index satisfying 1 ! γ ! 5/3.

Two equations are solved for the gas motion to obtain
the velocity v and density as a function of radius r. First,
the equation of mass continuity,

Ṁ = −4πr2ρv = constant. (1)

where Ṁ is the mass accretion rate. Second, the Bernoulli’s
equation, which reduces to

v2

2
+

(

γ
γ − 1

)

p∞

ρ∞
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)γ−1

− 1

]

=
GMBH

r
, (2)

where the right-hand-side represents a Newtonian gravita-
tional potential of the central star, which is a BH for our
case. Several types of solution are possible (Figure 2 of Bondi
1952); the one relevant for astrophysical accretion is the so-
called critical solution. In this solution, gas is subsonic in
the outer parts, passes through a sonic point, and accretes
onto the central object with a supersonic velocity. The mass
accretion rate for such a motion is

ṀB = 4πλc
(GMBH)2

c3
s,∞

ρ∞, (3)

with

λc =
(

1
2

)

(γ+1)
2(γ−1)

(

5 − 3γ
4

)

(3γ−5)
2(γ−1)

. (4)

Here cs =
√

γkBT/ (µmp) is the sound speed in the gas
of temperature T and mean molecular weight µ. Solving
Eqs. (1) and (2) gives the density and velocity of the Bondi
solution, which we denote as ρB(r) and vB(r).

This analysis gives a characteristic length scale, the
Bondi radius,

RB =
GMBH

c2
s,∞

. (5)

The location of the sonic point can be expressed analytically
as

Rs =
(

5 − 3γ
4

)

RB . (6)

An important timescale is the sound crossing time from a
distance RB to the center (the Bondi time):

tB =
RB

cs
=

GMBH

c3
s,∞

. (7)

The latter equality in Eq. (7) is for an isothermal case. These
equations are for a purely Newtonian gravitational potential
(Eq. 2). As γ → 5/3, the sonic radius asymptotically goes
to zero (Rs → 0), i.e., there is no relevant sonic point.

However, for a problem of BH accretion the general-
relativistic gravitational field differs from the Newtonian
form at very small radii. The pseudo-Newtonian Paczynsky-
Wiita potential (which we describe in §2.2, Eq. 8) can cap-
ture the relativistic effects well. For the Paczynsky-Wiita
potential as well as for the fully general-relativistic problem
(Begelman 1978), the Bondi flow with γ = 5/3 has a sonic
point at roughly the geometrical mean of the Bondi radius
and the Schwarzschild radius (see also Proga & Begelman
2003a).

2.2 Model Setup

Our simulation setup consists of a spherical distribution of
gas accreting onto a central SMBH with a mass of MBH =
108M#. The inner and outer radii of our computational vol-
ume are chosen such that the Bondi and sonic radii lie well
within our simulation domain. We choose the inner radius of
rin = 0.1 pc, which is at least an order of magnitude smaller
than the values of Rs we explored. The outer radius is var-
ied depending on the other model parameter values, and we
explore a range of rout = 5 − 200 pc.

We use the 3D Tree-PM Smoothed Particle Hydrody-
namics code GADGET-3 (originally described in Springel
2005). There are only gas particles in our simulations, be-
cause our outer radius goes only up to 5 − 200 pc, and the
dark matter density is much lower than the gas density in
the central 10’s - 100 pc of a galaxy.

The central SMBH is represented by the pseudo-
Newtonian potential given by Paczynsky & Wiita (1980):

ΨPW = −
GMBH

r − Rg
, with Rg =

2GMBH

c2
. (8)

Here Rg is the gravitational radius of the BH. In our sim-
ulations, Rg = 2.96 × 1013 cm = 9.57 × 10−6 pc; there-
fore the Paczynsky-Wiita potential is essentially Newtonian
within our computational domain. This is represented in the
GADGET code by a “static potential” approach, with the
following acceleration added to each particle,

%aPW = −
GMBH

(r − Rg)2
r̂. (9)

We also tested the effect of adding a galaxy bulge poten-
tial in our simulation, which is described in §3.1.2. In our
simulations we set the gravitational softening length of gas
to values in the range 0.005 − 0.02 pc. The minimum gas
smoothing length is set to 0.1 of the softening lengths, which
is 0.0005 − 0.002 pc.

2.3 Initial and Boundary Conditions

We start with a spherical distribution of particles between
rin and rout, distributed according to the initial profiles of
density ρinit(r), velocity vinit(r), and temperature Tinit(r).
For most of our runs the initial profiles are taken from the
Bondi solution, which is parametrised by the density ρ∞ and
temperature T∞ at infinity. The initial conditions (ICs) are
generated using an adiabatic index γinit, and the simulations
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merical method and simulation setup in §2. We present and
discuss the results in §3. We summarise and conclude in §4.

2 NUMERICAL METHOD

2.1 Revisiting the Bondi Problem

The problem of spherically symmetric accretion onto a cen-
tral mass was analysed in the seminal work by Bondi (1952).
It describes a central star at rest in a cloud of gas. The gas is
at rest at infinity, where it is parametrised by uniform den-
sity ρ∞ and pressure p∞. The motion of the gas is steady
and spherically symmetrical as it accretes onto the central
star. The increase in mass of the star is ignored, so that the
force field remains constant. The gas pressure p and density
ρ are related by the polytropic equation of state, p ∝ ργ ,
with the adiabatic index satisfying 1 ! γ ! 5/3.

Two equations are solved for the gas motion to obtain
the velocity v and density as a function of radius r. First,
the equation of mass continuity,

Ṁ = −4πr2ρv = constant. (1)

where Ṁ is the mass accretion rate. Second, the Bernoulli’s
equation, which reduces to

v2

2
+

(

γ
γ − 1

)

p∞

ρ∞

[
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)γ−1

− 1

]

=
GMBH

r
, (2)

where the right-hand-side represents a Newtonian gravita-
tional potential of the central star, which is a BH for our
case. Several types of solution are possible (Figure 2 of Bondi
1952); the one relevant for astrophysical accretion is the so-
called critical solution. In this solution, gas is subsonic in
the outer parts, passes through a sonic point, and accretes
onto the central object with a supersonic velocity. The mass
accretion rate for such a motion is

ṀB = 4πλc
(GMBH)2

c3
s,∞

ρ∞, (3)

with

λc =
(

1
2

)

(γ+1)
2(γ−1)

(

5 − 3γ
4

)

(3γ−5)
2(γ−1)

. (4)

Here cs =
√

γkBT/ (µmp) is the sound speed in the gas
of temperature T and mean molecular weight µ. Solving
Eqs. (1) and (2) gives the density and velocity of the Bondi
solution, which we denote as ρB(r) and vB(r).

This analysis gives a characteristic length scale, the
Bondi radius,

RB =
GMBH

c2
s,∞

. (5)

The location of the sonic point can be expressed analytically
as

Rs =
(

5 − 3γ
4

)

RB . (6)

An important timescale is the sound crossing time from a
distance RB to the center (the Bondi time):

tB =
RB

cs
=

GMBH

c3
s,∞

. (7)

The latter equality in Eq. (7) is for an isothermal case. These
equations are for a purely Newtonian gravitational potential
(Eq. 2). As γ → 5/3, the sonic radius asymptotically goes
to zero (Rs → 0), i.e., there is no relevant sonic point.

However, for a problem of BH accretion the general-
relativistic gravitational field differs from the Newtonian
form at very small radii. The pseudo-Newtonian Paczynsky-
Wiita potential (which we describe in §2.2, Eq. 8) can cap-
ture the relativistic effects well. For the Paczynsky-Wiita
potential as well as for the fully general-relativistic problem
(Begelman 1978), the Bondi flow with γ = 5/3 has a sonic
point at roughly the geometrical mean of the Bondi radius
and the Schwarzschild radius (see also Proga & Begelman
2003a).

2.2 Model Setup

Our simulation setup consists of a spherical distribution of
gas accreting onto a central SMBH with a mass of MBH =
108M#. The inner and outer radii of our computational vol-
ume are chosen such that the Bondi and sonic radii lie well
within our simulation domain. We choose the inner radius of
rin = 0.1 pc, which is at least an order of magnitude smaller
than the values of Rs we explored. The outer radius is var-
ied depending on the other model parameter values, and we
explore a range of rout = 5 − 200 pc.

We use the 3D Tree-PM Smoothed Particle Hydrody-
namics code GADGET-3 (originally described in Springel
2005). There are only gas particles in our simulations, be-
cause our outer radius goes only up to 5 − 200 pc, and the
dark matter density is much lower than the gas density in
the central 10’s - 100 pc of a galaxy.

The central SMBH is represented by the pseudo-
Newtonian potential given by Paczynsky & Wiita (1980):

ΨPW = −
GMBH

r − Rg
, with Rg =

2GMBH

c2
. (8)

Here Rg is the gravitational radius of the BH. In our sim-
ulations, Rg = 2.96 × 1013 cm = 9.57 × 10−6 pc; there-
fore the Paczynsky-Wiita potential is essentially Newtonian
within our computational domain. This is represented in the
GADGET code by a “static potential” approach, with the
following acceleration added to each particle,

%aPW = −
GMBH

(r − Rg)2
r̂. (9)

We also tested the effect of adding a galaxy bulge poten-
tial in our simulation, which is described in §3.1.2. In our
simulations we set the gravitational softening length of gas
to values in the range 0.005 − 0.02 pc. The minimum gas
smoothing length is set to 0.1 of the softening lengths, which
is 0.0005 − 0.002 pc.

2.3 Initial and Boundary Conditions

We start with a spherical distribution of particles between
rin and rout, distributed according to the initial profiles of
density ρinit(r), velocity vinit(r), and temperature Tinit(r).
For most of our runs the initial profiles are taken from the
Bondi solution, which is parametrised by the density ρ∞ and
temperature T∞ at infinity. The initial conditions (ICs) are
generated using an adiabatic index γinit, and the simulations
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merical method and simulation setup in §2. We present and
discuss the results in §3. We summarise and conclude in §4.

2 NUMERICAL METHOD

2.1 Revisiting the Bondi Problem

The problem of spherically symmetric accretion onto a cen-
tral mass was analysed in the seminal work by Bondi (1952).
It describes a central star at rest in a cloud of gas. The gas is
at rest at infinity, where it is parametrised by uniform den-
sity ρ∞ and pressure p∞. The motion of the gas is steady
and spherically symmetrical as it accretes onto the central
star. The increase in mass of the star is ignored, so that the
force field remains constant. The gas pressure p and density
ρ are related by the polytropic equation of state, p ∝ ργ ,
with the adiabatic index satisfying 1 ! γ ! 5/3.

Two equations are solved for the gas motion to obtain
the velocity v and density as a function of radius r. First,
the equation of mass continuity,

Ṁ = −4πr2ρv = constant. (1)

where Ṁ is the mass accretion rate. Second, the Bernoulli’s
equation, which reduces to

v2
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γ − 1

)
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)γ−1

− 1

]

=
GMBH

r
, (2)

where the right-hand-side represents a Newtonian gravita-
tional potential of the central star, which is a BH for our
case. Several types of solution are possible (Figure 2 of Bondi
1952); the one relevant for astrophysical accretion is the so-
called critical solution. In this solution, gas is subsonic in
the outer parts, passes through a sonic point, and accretes
onto the central object with a supersonic velocity. The mass
accretion rate for such a motion is

ṀB = 4πλc
(GMBH)2

c3
s,∞

ρ∞, (3)

with

λc =
(

1
2

)

(γ+1)
2(γ−1)

(

5 − 3γ
4

)

(3γ−5)
2(γ−1)

. (4)

Here cs =
√

γkBT/ (µmp) is the sound speed in the gas
of temperature T and mean molecular weight µ. Solving
Eqs. (1) and (2) gives the density and velocity of the Bondi
solution, which we denote as ρB(r) and vB(r).

This analysis gives a characteristic length scale, the
Bondi radius,

RB =
GMBH

c2
s,∞

. (5)

The location of the sonic point can be expressed analytically
as

Rs =
(

5 − 3γ
4

)

RB . (6)

An important timescale is the sound crossing time from a
distance RB to the center (the Bondi time):

tB =
RB

cs
=

GMBH

c3
s,∞

. (7)

The latter equality in Eq. (7) is for an isothermal case. These
equations are for a purely Newtonian gravitational potential
(Eq. 2). As γ → 5/3, the sonic radius asymptotically goes
to zero (Rs → 0), i.e., there is no relevant sonic point.

However, for a problem of BH accretion the general-
relativistic gravitational field differs from the Newtonian
form at very small radii. The pseudo-Newtonian Paczynsky-
Wiita potential (which we describe in §2.2, Eq. 8) can cap-
ture the relativistic effects well. For the Paczynsky-Wiita
potential as well as for the fully general-relativistic problem
(Begelman 1978), the Bondi flow with γ = 5/3 has a sonic
point at roughly the geometrical mean of the Bondi radius
and the Schwarzschild radius (see also Proga & Begelman
2003a).

2.2 Model Setup

Our simulation setup consists of a spherical distribution of
gas accreting onto a central SMBH with a mass of MBH =
108M#. The inner and outer radii of our computational vol-
ume are chosen such that the Bondi and sonic radii lie well
within our simulation domain. We choose the inner radius of
rin = 0.1 pc, which is at least an order of magnitude smaller
than the values of Rs we explored. The outer radius is var-
ied depending on the other model parameter values, and we
explore a range of rout = 5 − 200 pc.

We use the 3D Tree-PM Smoothed Particle Hydrody-
namics code GADGET-3 (originally described in Springel
2005). There are only gas particles in our simulations, be-
cause our outer radius goes only up to 5 − 200 pc, and the
dark matter density is much lower than the gas density in
the central 10’s - 100 pc of a galaxy.

The central SMBH is represented by the pseudo-
Newtonian potential given by Paczynsky & Wiita (1980):

ΨPW = −
GMBH

r − Rg
, with Rg =

2GMBH

c2
. (8)

Here Rg is the gravitational radius of the BH. In our sim-
ulations, Rg = 2.96 × 1013 cm = 9.57 × 10−6 pc; there-
fore the Paczynsky-Wiita potential is essentially Newtonian
within our computational domain. This is represented in the
GADGET code by a “static potential” approach, with the
following acceleration added to each particle,

%aPW = −
GMBH

(r − Rg)2
r̂. (9)

We also tested the effect of adding a galaxy bulge poten-
tial in our simulation, which is described in §3.1.2. In our
simulations we set the gravitational softening length of gas
to values in the range 0.005 − 0.02 pc. The minimum gas
smoothing length is set to 0.1 of the softening lengths, which
is 0.0005 − 0.002 pc.

2.3 Initial and Boundary Conditions

We start with a spherical distribution of particles between
rin and rout, distributed according to the initial profiles of
density ρinit(r), velocity vinit(r), and temperature Tinit(r).
For most of our runs the initial profiles are taken from the
Bondi solution, which is parametrised by the density ρ∞ and
temperature T∞ at infinity. The initial conditions (ICs) are
generated using an adiabatic index γinit, and the simulations
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Simplest Case: Spherical Bondi 
Accretion Flow onto a SMBH

• GADGET-3:  3-d cosmological SPH/
N-body code (Springel ’05)

• Central SMBH 108 M⦿ 

represented by a pseudo-
Newtonian Paczynsky & Wiita 
(1980) potential

• rout=5-20 pc,  Nptcl=643-1283

• Set IC to uniform/spherical 
Bondi flow w/ γ=1.01, ρ∞=10-19 
g/cm3,  T∞=107K,  Tinit=T∞  

• Corresponding Bondi solution: 
RB=3pc, Rsonic=1.5pc,  tB=7.9e3yr

• All runs: rin=0.1pc,  γ=1.01

14 P. Barai et al.

Table 1. Simulations of Bondi Accretion a

Run rout N b IC Mtot,IC
c Mpart

d tend
e fIN

f fOUT
g Ṁin,rin

h

No. [pc] [M!] [M!] [104 yr] [ṀB(γrun , ρ∞, T∞)]

1 5 643 Uniform i 3.96 × 105 1.51 3 0.35 0.65 0.4

2 10 643 Uniform 6.19 × 106 23.61 7.2 0.15 0.85 0.6

3 50 1283 Uniform 7.73 × 108 368.60 20 0.02 0.9 1

4 5 643 Bondi j 1.81 × 106 6.89 2 0.4 0.55 1

5 10 643 Bondi 9.76 × 106 37.23 8 0.2 0.8 1

6 10 1283 Bondi 9.76 × 106 4.65 8 0.2 0.8 1

7 20 1283 Bondi 6.24 × 107 29.75 8 0.07 0.9 1

7a k 20 1283 Bondi 6.24 × 107 29.75 80 0.65 0.05 1

7b l 20 1283 Bondi 6.24 × 107 29.75 100 0.93 0.01 1.2

8 50 1283 Bondi 8.48 × 108 404.35 16 0.02 0.85 1

9 20 1283 ρB , vinit = 0 6.24 × 107 29.75 8 0.06 0.9 1

10 20 1283 Uniform 4.95 × 107 23.60 8 0.06 0.9 1

11 20 1283 Hernquist m 6.24 × 107 29.75 7.2 0.06 0.85 1.4

12 n 20 1283 Bondi 6.24 × 107 29.75 8 0.08 0.8 1.6

a All the runs have rin = 0.1 pc and γrun = 1.01. Initial conditions are generated using γinit = 1.01, ρ∞ = 10−19 g/cm3,

T∞ = 107 K, and Tinit = T∞. The corresponding Bondi solution has RB = 3.0 pc, Rs = 1.5 pc, and tB = 7.9 × 103 yr.

b N = Number of particles in the initial condition.

c Mtot,IC = Initial total gas mass within simulation volume.

d Mpart = Particle mass.

e tend = Simulation end time.

f fIN = Mass fraction accreted into rin by t = tend.

g fOUT = Mass fraction moved outside rout by t = tend.

h The steady-state value of mass inflow rate at the inner radius (if a steady-state is reached in a run), or the maximum
value (if a steady-state is not reached by tend).

i Uniform initial condition: ρinit = ρ∞, vinit = 0.

j Bondi initial condition: ρinit(r) = ρB(r), vinit(r) = vB(r).

k Run with different outer boundary condition: Set vr = vB for particles which have vr > 0 in between 8 − 20 pc.

l Run with different outer boundary condition: Set zero pressure gradient, 〈∇P/ρ〉i = 0, for all particles between 18 − 20
pc and for those which have vr > 0 in between 8 − 20 pc.

m Hernquist initial condition: ρinit(r) = ρH(r), vinit = 0.

n Run with a bulge potential of a Milky-Way type galaxy following the Hernquist profile (Eq. 19) with Mbulge = 3.4×1011M!

and abulge = 700 pc.
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Example:  Properties of Particles

• rout=20 pc,  Nptcl=1283

• Snap at t=2tB=1.6e4 yr

• Follows the Bondi 
solution (red curve) 
well except the very 
inner part

• Inner part: supersonic 
(M~6), outerpart: 
subsonic
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Figure 1. Properties of particles in Run 7 as a function of radius, at simulation time t = 2tB = 1.6 × 104 yr. The quantities plotted
from top-left: radial velocity, temperature, Mach number, density, acceleration, and smoothing length. The solid line is the median value,
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Figure 2. Cross-section slice of gas density in the x − y plane through z = 0 of Run 4 at time t = 0.25tB = 0.2 × 104 yr, overplotted
with the velocity vector arrows.
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Figure 3. Mass inflow rate at the inner boundary as a function of time for the first eight runs in Table 1. Each panel has a different outer
radius: rout = 5 (top-left), 10 (top-right), 20 (bottom-left), 50 pc (bottom-right), as the time coverage becomes longer. The top-right
panel shows different particle numbers: N = 643 (Run 05) and 1283 (Run 06) for the Bondi IC. In addition, the top row and bottom-right
panels show the results of the Bondi IC (Runs 04, 05, 06, 08), together with the uniform IC runs (Runs 01, 02, 03). The Bondi mass
accretion rate (marked as the dash-dot-dot-dot horizontal line in each panel) is reproduced for a limited time duration.
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panel shows different particle numbers: N = 643 (Run 05) and 1283 (Run 06) for the Bondi IC. In addition, the top row and bottom-right
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accretion rate (marked as the dash-dot-dot-dot horizontal line in each panel) is reproduced for a limited time duration.
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Figure 3. Mass inflow rate at the inner boundary as a function of time for the first eight runs in Table 1. Each panel has a different outer
radius: rout = 5 (top-left), 10 (top-right), 20 (bottom-left), 50 pc (bottom-right), as the time coverage becomes longer. The top-right
panel shows different particle numbers: N = 643 (Run 05) and 1283 (Run 06) for the Bondi IC. In addition, the top row and bottom-right
panels show the results of the Bondi IC (Runs 04, 05, 06, 08), together with the uniform IC runs (Runs 01, 02, 03). The Bondi mass
accretion rate (marked as the dash-dot-dot-dot horizontal line in each panel) is reproduced for a limited time duration.
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are run with γrun. Most of our runs have γinit = γrun (see
Tables 1 and 2). The values of different parameters we used,
along with their justification are described in §3.1 and §3.2.

Any particle going out of our computational domain
(rin < r < rout) is considered to have escaped the boundary,
and is removed from the simulation. Particles going inside rin

are being accreted into the inner boundary, and are counted
in the mass inflow rate (§3.1.2). Effectively, we simulate a
static sink of radius rin, which absorbs the accreting parti-
cles. We tested some other outer boundary conditions that
are discussed in §3.1.5.

2.4 Radiative Heating and Cooling

Radiation from the central SMBH is considered to be in
the form of a spherical X-ray emitting corona (e.g., Proga
2007; Proga et al. 2008; Kurosawa & Proga 2009a), which
irradiates the accretion flow. The X-ray luminosity, LX , is
a fraction fX of the Eddington luminosity, LEdd:

LX = fXLEdd, LEdd =
4πcGmpMBH

σe
, (10)

where c is the speed of light, G is the gravitational constant,
mp is the proton mass, and σe is the Thomson cross section
for the electron. The local X-ray radiation flux at a distance
r from the central source is

FX =
LX

4πr2
. (11)

The heating-cooling function is parametrised in terms of the
photoionization parameter, ξ, which is defined as

ξ ≡
4πFX

n
=

LX

r2n
, (12)

where n = ρ/(µmp) is the local number density of gas. We
use a hydrogen mass fraction of 0.76 to estimate the mean
molecular weight µ.

We include radiative processes in our simulations using
the heating-cooling function from Proga et al. (2000). The
equations are originally from Blondin (1994), who presented
approximate analytic formulae for the heating and cooling
rates of an X-ray irradiated optically-thin gas illuminated by
a 10 keV bremsstrahlung spectrum. The net heating-cooling
rate, L, is given by

ρL = n2 (GCompton + GX − Lb,l) [erg cm−3 s−1], (13)

where each of the components are formulated below. The
rate of Compton heating and cooling,

GCompton = 8.9 × 10−36ξ (TX − 4T ) [erg cm3 s−1]. (14)

The net rate of X-ray photoionization heating and recombi-
nation cooling,

GX = 1.5 × 10−21ξ1/4T−1/2
(

1 −
T
TX

)

[erg cm3 s−1].(15)

The rate of bremsstrahlung and line cooling,

Lb,l = 3.3 × 10−27T 1/2

+
[

1.7 × 10−18 exp
(

−1.3 × 105/T
)

ξ−1T−1/2

+ 10−24
]

δ [erg cm3 s−1]. (16)

We adopt the optically thin version of line cooling in Eq. (16)
by setting δ = 1. In the above, TX is the characteristic

temperature of the bremsstrahlung radiation. We use TX =
1.16× 108 K, corresponding to Blondin (1994)’s value of 10
keV.

The heating-cooling rate is a function of ξ, TX and T .
In the code, L is computed for each active particle, and
added to the specific internal energy (entropy in GADGET-
3) equation of each particle using a semi-implicit method.
In the entropy equation, the non-radiative terms are inte-
grated in an explicit fashion using the simulation timestep,
and then the radiative term is integrated using an implicit
method. This integration methodology is the same as that
of radiative cooling and photoionization heating in a cos-
mological context in the GADGET code (e.g., Katz et al.
1996).

3 RESULTS AND DISCUSSION

3.1 Reproducing Bondi Accretion

First, we perform a series of simulations of Bondi accre-
tion (i.e., there is no radiative heating and cooling) as listed
in Table 1. We use T∞ = 107 K and ρ∞ = 10−19 g/cm3,
which are typical values at 10’s of pc away from SMBH used
in AGN accretion simulations (see e.g., Kurosawa & Proga
2009b, and references therein). Since Rs → 0 as γ → 5/3
(Eq. 6 in §2.1), we use γinit = 1.01 in order to have the
Bondi and sonic radius well between rin and rout. Therefore
the equation of state is almost isothermal, and the simula-
tions are run with the same value of γrun = 1.01. For these
parameters, the Bondi radius is at RB = 3.0 pc, the theo-
retical value of the sonic point is Rs = 1.5 pc, and the Bondi
time is tB = 7.9 × 103 yr.

All the runs in Table 1 have Tinit(r) = T∞. In the Bondi
IC runs, the initial condition is generated from the Bondi
solution, i.e., the initial particles follow ρinit(r) = ρB(r) and
vinit(r) = vB(r). In the uniform IC runs, we start with a
constant initial density of ρ∞ and vinit = 0.

3.1.1 Particle Properties

Figure 1 is a scatter plot showing the properties of particles
vs. radius in a representative Bondi accretion simulation,
Run 7, which has rout = 20 pc and the Bondi IC. The ra-
dial component (vr) of the velocity v and the density profile
follows the Bondi solution quite well, except near the inner
and outer radii. A negative value of vr represents inflowing
mass, whereas positive vr denotes an outflow. We do not
show the non-radial velocity components (i.e., vθ and vφ)
because they are typically 100−1000 times smaller than vr.
The temperature profile is almost isothermal at 107 K (=
T∞), which is expected since we used γrun = 1.01. Examin-
ing the Mach number profile, we see that the gas is subsonic
near rout, passes through a sonic point, and approaches rin

with supersonic velocity (Mach = 6). The location of the
sonic point (where the gas crosses Mach = 1) in the simu-
lation is ∼ 1.5 pc, consistent with the theoretical value of
the Bondi solution (Rs, §3.1). The smoothing length (hsml)
of particles near rin is ∼ 0.12 pc. It is much larger than the
minimum gas smoothing length, which is set to 0.0005 pc in
this run. This finite numerical resolution is partly respon-
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are run with γrun. Most of our runs have γinit = γrun (see
Tables 1 and 2). The values of different parameters we used,
along with their justification are described in §3.1 and §3.2.

Any particle going out of our computational domain
(rin < r < rout) is considered to have escaped the boundary,
and is removed from the simulation. Particles going inside rin

are being accreted into the inner boundary, and are counted
in the mass inflow rate (§3.1.2). Effectively, we simulate a
static sink of radius rin, which absorbs the accreting parti-
cles. We tested some other outer boundary conditions that
are discussed in §3.1.5.

2.4 Radiative Heating and Cooling

Radiation from the central SMBH is considered to be in
the form of a spherical X-ray emitting corona (e.g., Proga
2007; Proga et al. 2008; Kurosawa & Proga 2009a), which
irradiates the accretion flow. The X-ray luminosity, LX , is
a fraction fX of the Eddington luminosity, LEdd:

LX = fXLEdd, LEdd =
4πcGmpMBH

σe
, (10)

where c is the speed of light, G is the gravitational constant,
mp is the proton mass, and σe is the Thomson cross section
for the electron. The local X-ray radiation flux at a distance
r from the central source is

FX =
LX

4πr2
. (11)

The heating-cooling function is parametrised in terms of the
photoionization parameter, ξ, which is defined as

ξ ≡
4πFX

n
=

LX

r2n
, (12)

where n = ρ/(µmp) is the local number density of gas. We
use a hydrogen mass fraction of 0.76 to estimate the mean
molecular weight µ.

We include radiative processes in our simulations using
the heating-cooling function from Proga et al. (2000). The
equations are originally from Blondin (1994), who presented
approximate analytic formulae for the heating and cooling
rates of an X-ray irradiated optically-thin gas illuminated by
a 10 keV bremsstrahlung spectrum. The net heating-cooling
rate, L, is given by

ρL = n2 (GCompton + GX − Lb,l) [erg cm−3 s−1], (13)

where each of the components are formulated below. The
rate of Compton heating and cooling,

GCompton = 8.9 × 10−36ξ (TX − 4T ) [erg cm3 s−1]. (14)

The net rate of X-ray photoionization heating and recombi-
nation cooling,

GX = 1.5 × 10−21ξ1/4T−1/2
(

1 −
T
TX

)

[erg cm3 s−1].(15)

The rate of bremsstrahlung and line cooling,

Lb,l = 3.3 × 10−27T 1/2

+
[

1.7 × 10−18 exp
(

−1.3 × 105/T
)

ξ−1T−1/2

+ 10−24
]

δ [erg cm3 s−1]. (16)

We adopt the optically thin version of line cooling in Eq. (16)
by setting δ = 1. In the above, TX is the characteristic

temperature of the bremsstrahlung radiation. We use TX =
1.16× 108 K, corresponding to Blondin (1994)’s value of 10
keV.

The heating-cooling rate is a function of ξ, TX and T .
In the code, L is computed for each active particle, and
added to the specific internal energy (entropy in GADGET-
3) equation of each particle using a semi-implicit method.
In the entropy equation, the non-radiative terms are inte-
grated in an explicit fashion using the simulation timestep,
and then the radiative term is integrated using an implicit
method. This integration methodology is the same as that
of radiative cooling and photoionization heating in a cos-
mological context in the GADGET code (e.g., Katz et al.
1996).

3 RESULTS AND DISCUSSION

3.1 Reproducing Bondi Accretion

First, we perform a series of simulations of Bondi accre-
tion (i.e., there is no radiative heating and cooling) as listed
in Table 1. We use T∞ = 107 K and ρ∞ = 10−19 g/cm3,
which are typical values at 10’s of pc away from SMBH used
in AGN accretion simulations (see e.g., Kurosawa & Proga
2009b, and references therein). Since Rs → 0 as γ → 5/3
(Eq. 6 in §2.1), we use γinit = 1.01 in order to have the
Bondi and sonic radius well between rin and rout. Therefore
the equation of state is almost isothermal, and the simula-
tions are run with the same value of γrun = 1.01. For these
parameters, the Bondi radius is at RB = 3.0 pc, the theo-
retical value of the sonic point is Rs = 1.5 pc, and the Bondi
time is tB = 7.9 × 103 yr.

All the runs in Table 1 have Tinit(r) = T∞. In the Bondi
IC runs, the initial condition is generated from the Bondi
solution, i.e., the initial particles follow ρinit(r) = ρB(r) and
vinit(r) = vB(r). In the uniform IC runs, we start with a
constant initial density of ρ∞ and vinit = 0.

3.1.1 Particle Properties

Figure 1 is a scatter plot showing the properties of particles
vs. radius in a representative Bondi accretion simulation,
Run 7, which has rout = 20 pc and the Bondi IC. The ra-
dial component (vr) of the velocity v and the density profile
follows the Bondi solution quite well, except near the inner
and outer radii. A negative value of vr represents inflowing
mass, whereas positive vr denotes an outflow. We do not
show the non-radial velocity components (i.e., vθ and vφ)
because they are typically 100−1000 times smaller than vr.
The temperature profile is almost isothermal at 107 K (=
T∞), which is expected since we used γrun = 1.01. Examin-
ing the Mach number profile, we see that the gas is subsonic
near rout, passes through a sonic point, and approaches rin

with supersonic velocity (Mach = 6). The location of the
sonic point (where the gas crosses Mach = 1) in the simu-
lation is ∼ 1.5 pc, consistent with the theoretical value of
the Bondi solution (Rs, §3.1). The smoothing length (hsml)
of particles near rin is ∼ 0.12 pc. It is much larger than the
minimum gas smoothing length, which is set to 0.0005 pc in
this run. This finite numerical resolution is partly respon-
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are run with γrun. Most of our runs have γinit = γrun (see
Tables 1 and 2). The values of different parameters we used,
along with their justification are described in §3.1 and §3.2.

Any particle going out of our computational domain
(rin < r < rout) is considered to have escaped the boundary,
and is removed from the simulation. Particles going inside rin

are being accreted into the inner boundary, and are counted
in the mass inflow rate (§3.1.2). Effectively, we simulate a
static sink of radius rin, which absorbs the accreting parti-
cles. We tested some other outer boundary conditions that
are discussed in §3.1.5.

2.4 Radiative Heating and Cooling

Radiation from the central SMBH is considered to be in
the form of a spherical X-ray emitting corona (e.g., Proga
2007; Proga et al. 2008; Kurosawa & Proga 2009a), which
irradiates the accretion flow. The X-ray luminosity, LX , is
a fraction fX of the Eddington luminosity, LEdd:

LX = fXLEdd, LEdd =
4πcGmpMBH

σe
, (10)

where c is the speed of light, G is the gravitational constant,
mp is the proton mass, and σe is the Thomson cross section
for the electron. The local X-ray radiation flux at a distance
r from the central source is

FX =
LX

4πr2
. (11)

The heating-cooling function is parametrised in terms of the
photoionization parameter, ξ, which is defined as

ξ ≡
4πFX

n
=

LX

r2n
, (12)

where n = ρ/(µmp) is the local number density of gas. We
use a hydrogen mass fraction of 0.76 to estimate the mean
molecular weight µ.

We include radiative processes in our simulations using
the heating-cooling function from Proga et al. (2000). The
equations are originally from Blondin (1994), who presented
approximate analytic formulae for the heating and cooling
rates of an X-ray irradiated optically-thin gas illuminated by
a 10 keV bremsstrahlung spectrum. The net heating-cooling
rate, L, is given by

ρL = n2 (GCompton + GX − Lb,l) [erg cm−3 s−1], (13)

where each of the components are formulated below. The
rate of Compton heating and cooling,

GCompton = 8.9 × 10−36ξ (TX − 4T ) [erg cm3 s−1]. (14)

The net rate of X-ray photoionization heating and recombi-
nation cooling,

GX = 1.5 × 10−21ξ1/4T−1/2
(

1 −
T
TX

)

[erg cm3 s−1].(15)

The rate of bremsstrahlung and line cooling,

Lb,l = 3.3 × 10−27T 1/2

+
[

1.7 × 10−18 exp
(

−1.3 × 105/T
)

ξ−1T−1/2

+ 10−24
]

δ [erg cm3 s−1]. (16)

We adopt the optically thin version of line cooling in Eq. (16)
by setting δ = 1. In the above, TX is the characteristic

temperature of the bremsstrahlung radiation. We use TX =
1.16× 108 K, corresponding to Blondin (1994)’s value of 10
keV.

The heating-cooling rate is a function of ξ, TX and T .
In the code, L is computed for each active particle, and
added to the specific internal energy (entropy in GADGET-
3) equation of each particle using a semi-implicit method.
In the entropy equation, the non-radiative terms are inte-
grated in an explicit fashion using the simulation timestep,
and then the radiative term is integrated using an implicit
method. This integration methodology is the same as that
of radiative cooling and photoionization heating in a cos-
mological context in the GADGET code (e.g., Katz et al.
1996).

3 RESULTS AND DISCUSSION

3.1 Reproducing Bondi Accretion

First, we perform a series of simulations of Bondi accre-
tion (i.e., there is no radiative heating and cooling) as listed
in Table 1. We use T∞ = 107 K and ρ∞ = 10−19 g/cm3,
which are typical values at 10’s of pc away from SMBH used
in AGN accretion simulations (see e.g., Kurosawa & Proga
2009b, and references therein). Since Rs → 0 as γ → 5/3
(Eq. 6 in §2.1), we use γinit = 1.01 in order to have the
Bondi and sonic radius well between rin and rout. Therefore
the equation of state is almost isothermal, and the simula-
tions are run with the same value of γrun = 1.01. For these
parameters, the Bondi radius is at RB = 3.0 pc, the theo-
retical value of the sonic point is Rs = 1.5 pc, and the Bondi
time is tB = 7.9 × 103 yr.

All the runs in Table 1 have Tinit(r) = T∞. In the Bondi
IC runs, the initial condition is generated from the Bondi
solution, i.e., the initial particles follow ρinit(r) = ρB(r) and
vinit(r) = vB(r). In the uniform IC runs, we start with a
constant initial density of ρ∞ and vinit = 0.

3.1.1 Particle Properties

Figure 1 is a scatter plot showing the properties of particles
vs. radius in a representative Bondi accretion simulation,
Run 7, which has rout = 20 pc and the Bondi IC. The ra-
dial component (vr) of the velocity v and the density profile
follows the Bondi solution quite well, except near the inner
and outer radii. A negative value of vr represents inflowing
mass, whereas positive vr denotes an outflow. We do not
show the non-radial velocity components (i.e., vθ and vφ)
because they are typically 100−1000 times smaller than vr.
The temperature profile is almost isothermal at 107 K (=
T∞), which is expected since we used γrun = 1.01. Examin-
ing the Mach number profile, we see that the gas is subsonic
near rout, passes through a sonic point, and approaches rin

with supersonic velocity (Mach = 6). The location of the
sonic point (where the gas crosses Mach = 1) in the simu-
lation is ∼ 1.5 pc, consistent with the theoretical value of
the Bondi solution (Rs, §3.1). The smoothing length (hsml)
of particles near rin is ∼ 0.12 pc. It is much larger than the
minimum gas smoothing length, which is set to 0.0005 pc in
this run. This finite numerical resolution is partly respon-
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are run with γrun. Most of our runs have γinit = γrun (see
Tables 1 and 2). The values of different parameters we used,
along with their justification are described in §3.1 and §3.2.

Any particle going out of our computational domain
(rin < r < rout) is considered to have escaped the boundary,
and is removed from the simulation. Particles going inside rin

are being accreted into the inner boundary, and are counted
in the mass inflow rate (§3.1.2). Effectively, we simulate a
static sink of radius rin, which absorbs the accreting parti-
cles. We tested some other outer boundary conditions that
are discussed in §3.1.5.

2.4 Radiative Heating and Cooling

Radiation from the central SMBH is considered to be in
the form of a spherical X-ray emitting corona (e.g., Proga
2007; Proga et al. 2008; Kurosawa & Proga 2009a), which
irradiates the accretion flow. The X-ray luminosity, LX , is
a fraction fX of the Eddington luminosity, LEdd:

LX = fXLEdd, LEdd =
4πcGmpMBH

σe
, (10)

where c is the speed of light, G is the gravitational constant,
mp is the proton mass, and σe is the Thomson cross section
for the electron. The local X-ray radiation flux at a distance
r from the central source is

FX =
LX

4πr2
. (11)

The heating-cooling function is parametrised in terms of the
photoionization parameter, ξ, which is defined as

ξ ≡
4πFX

n
=

LX

r2n
, (12)

where n = ρ/(µmp) is the local number density of gas. We
use a hydrogen mass fraction of 0.76 to estimate the mean
molecular weight µ.

We include radiative processes in our simulations using
the heating-cooling function from Proga et al. (2000). The
equations are originally from Blondin (1994), who presented
approximate analytic formulae for the heating and cooling
rates of an X-ray irradiated optically-thin gas illuminated by
a 10 keV bremsstrahlung spectrum. The net heating-cooling
rate, L, is given by

ρL = n2 (GCompton + GX − Lb,l) [erg cm−3 s−1], (13)

where each of the components are formulated below. The
rate of Compton heating and cooling,

GCompton = 8.9 × 10−36ξ (TX − 4T ) [erg cm3 s−1]. (14)

The net rate of X-ray photoionization heating and recombi-
nation cooling,

GX = 1.5 × 10−21ξ1/4T−1/2
(

1 −
T
TX

)

[erg cm3 s−1].(15)

The rate of bremsstrahlung and line cooling,

Lb,l = 3.3 × 10−27T 1/2

+
[

1.7 × 10−18 exp
(

−1.3 × 105/T
)

ξ−1T−1/2

+ 10−24
]

δ [erg cm3 s−1]. (16)

We adopt the optically thin version of line cooling in Eq. (16)
by setting δ = 1. In the above, TX is the characteristic

temperature of the bremsstrahlung radiation. We use TX =
1.16× 108 K, corresponding to Blondin (1994)’s value of 10
keV.

The heating-cooling rate is a function of ξ, TX and T .
In the code, L is computed for each active particle, and
added to the specific internal energy (entropy in GADGET-
3) equation of each particle using a semi-implicit method.
In the entropy equation, the non-radiative terms are inte-
grated in an explicit fashion using the simulation timestep,
and then the radiative term is integrated using an implicit
method. This integration methodology is the same as that
of radiative cooling and photoionization heating in a cos-
mological context in the GADGET code (e.g., Katz et al.
1996).

3 RESULTS AND DISCUSSION

3.1 Reproducing Bondi Accretion

First, we perform a series of simulations of Bondi accre-
tion (i.e., there is no radiative heating and cooling) as listed
in Table 1. We use T∞ = 107 K and ρ∞ = 10−19 g/cm3,
which are typical values at 10’s of pc away from SMBH used
in AGN accretion simulations (see e.g., Kurosawa & Proga
2009b, and references therein). Since Rs → 0 as γ → 5/3
(Eq. 6 in §2.1), we use γinit = 1.01 in order to have the
Bondi and sonic radius well between rin and rout. Therefore
the equation of state is almost isothermal, and the simula-
tions are run with the same value of γrun = 1.01. For these
parameters, the Bondi radius is at RB = 3.0 pc, the theo-
retical value of the sonic point is Rs = 1.5 pc, and the Bondi
time is tB = 7.9 × 103 yr.

All the runs in Table 1 have Tinit(r) = T∞. In the Bondi
IC runs, the initial condition is generated from the Bondi
solution, i.e., the initial particles follow ρinit(r) = ρB(r) and
vinit(r) = vB(r). In the uniform IC runs, we start with a
constant initial density of ρ∞ and vinit = 0.

3.1.1 Particle Properties

Figure 1 is a scatter plot showing the properties of particles
vs. radius in a representative Bondi accretion simulation,
Run 7, which has rout = 20 pc and the Bondi IC. The ra-
dial component (vr) of the velocity v and the density profile
follows the Bondi solution quite well, except near the inner
and outer radii. A negative value of vr represents inflowing
mass, whereas positive vr denotes an outflow. We do not
show the non-radial velocity components (i.e., vθ and vφ)
because they are typically 100−1000 times smaller than vr.
The temperature profile is almost isothermal at 107 K (=
T∞), which is expected since we used γrun = 1.01. Examin-
ing the Mach number profile, we see that the gas is subsonic
near rout, passes through a sonic point, and approaches rin

with supersonic velocity (Mach = 6). The location of the
sonic point (where the gas crosses Mach = 1) in the simu-
lation is ∼ 1.5 pc, consistent with the theoretical value of
the Bondi solution (Rs, §3.1). The smoothing length (hsml)
of particles near rin is ∼ 0.12 pc. It is much larger than the
minimum gas smoothing length, which is set to 0.0005 pc in
this run. This finite numerical resolution is partly respon-
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are run with γrun. Most of our runs have γinit = γrun (see
Tables 1 and 2). The values of different parameters we used,
along with their justification are described in §3.1 and §3.2.

Any particle going out of our computational domain
(rin < r < rout) is considered to have escaped the boundary,
and is removed from the simulation. Particles going inside rin

are being accreted into the inner boundary, and are counted
in the mass inflow rate (§3.1.2). Effectively, we simulate a
static sink of radius rin, which absorbs the accreting parti-
cles. We tested some other outer boundary conditions that
are discussed in §3.1.5.

2.4 Radiative Heating and Cooling

Radiation from the central SMBH is considered to be in
the form of a spherical X-ray emitting corona (e.g., Proga
2007; Proga et al. 2008; Kurosawa & Proga 2009a), which
irradiates the accretion flow. The X-ray luminosity, LX , is
a fraction fX of the Eddington luminosity, LEdd:

LX = fXLEdd, LEdd =
4πcGmpMBH

σe
, (10)

where c is the speed of light, G is the gravitational constant,
mp is the proton mass, and σe is the Thomson cross section
for the electron. The local X-ray radiation flux at a distance
r from the central source is

FX =
LX

4πr2
. (11)

The heating-cooling function is parametrised in terms of the
photoionization parameter, ξ, which is defined as

ξ ≡
4πFX

n
=

LX

r2n
, (12)

where n = ρ/(µmp) is the local number density of gas. We
use a hydrogen mass fraction of 0.76 to estimate the mean
molecular weight µ.

We include radiative processes in our simulations using
the heating-cooling function from Proga et al. (2000). The
equations are originally from Blondin (1994), who presented
approximate analytic formulae for the heating and cooling
rates of an X-ray irradiated optically-thin gas illuminated by
a 10 keV bremsstrahlung spectrum. The net heating-cooling
rate, L, is given by

ρL = n2 (GCompton + GX − Lb,l) [erg cm−3 s−1], (13)

where each of the components are formulated below. The
rate of Compton heating and cooling,

GCompton = 8.9 × 10−36ξ (TX − 4T ) [erg cm3 s−1]. (14)

The net rate of X-ray photoionization heating and recombi-
nation cooling,

GX = 1.5 × 10−21ξ1/4T−1/2
(

1 −
T
TX

)

[erg cm3 s−1].(15)

The rate of bremsstrahlung and line cooling,

Lb,l = 3.3 × 10−27T 1/2

+
[

1.7 × 10−18 exp
(

−1.3 × 105/T
)

ξ−1T−1/2

+ 10−24
]

δ [erg cm3 s−1]. (16)

We adopt the optically thin version of line cooling in Eq. (16)
by setting δ = 1. In the above, TX is the characteristic

temperature of the bremsstrahlung radiation. We use TX =
1.16× 108 K, corresponding to Blondin (1994)’s value of 10
keV.

The heating-cooling rate is a function of ξ, TX and T .
In the code, L is computed for each active particle, and
added to the specific internal energy (entropy in GADGET-
3) equation of each particle using a semi-implicit method.
In the entropy equation, the non-radiative terms are inte-
grated in an explicit fashion using the simulation timestep,
and then the radiative term is integrated using an implicit
method. This integration methodology is the same as that
of radiative cooling and photoionization heating in a cos-
mological context in the GADGET code (e.g., Katz et al.
1996).

3 RESULTS AND DISCUSSION

3.1 Reproducing Bondi Accretion

First, we perform a series of simulations of Bondi accre-
tion (i.e., there is no radiative heating and cooling) as listed
in Table 1. We use T∞ = 107 K and ρ∞ = 10−19 g/cm3,
which are typical values at 10’s of pc away from SMBH used
in AGN accretion simulations (see e.g., Kurosawa & Proga
2009b, and references therein). Since Rs → 0 as γ → 5/3
(Eq. 6 in §2.1), we use γinit = 1.01 in order to have the
Bondi and sonic radius well between rin and rout. Therefore
the equation of state is almost isothermal, and the simula-
tions are run with the same value of γrun = 1.01. For these
parameters, the Bondi radius is at RB = 3.0 pc, the theo-
retical value of the sonic point is Rs = 1.5 pc, and the Bondi
time is tB = 7.9 × 103 yr.

All the runs in Table 1 have Tinit(r) = T∞. In the Bondi
IC runs, the initial condition is generated from the Bondi
solution, i.e., the initial particles follow ρinit(r) = ρB(r) and
vinit(r) = vB(r). In the uniform IC runs, we start with a
constant initial density of ρ∞ and vinit = 0.

3.1.1 Particle Properties

Figure 1 is a scatter plot showing the properties of particles
vs. radius in a representative Bondi accretion simulation,
Run 7, which has rout = 20 pc and the Bondi IC. The ra-
dial component (vr) of the velocity v and the density profile
follows the Bondi solution quite well, except near the inner
and outer radii. A negative value of vr represents inflowing
mass, whereas positive vr denotes an outflow. We do not
show the non-radial velocity components (i.e., vθ and vφ)
because they are typically 100−1000 times smaller than vr.
The temperature profile is almost isothermal at 107 K (=
T∞), which is expected since we used γrun = 1.01. Examin-
ing the Mach number profile, we see that the gas is subsonic
near rout, passes through a sonic point, and approaches rin

with supersonic velocity (Mach = 6). The location of the
sonic point (where the gas crosses Mach = 1) in the simu-
lation is ∼ 1.5 pc, consistent with the theoretical value of
the Bondi solution (Rs, §3.1). The smoothing length (hsml)
of particles near rin is ∼ 0.12 pc. It is much larger than the
minimum gas smoothing length, which is set to 0.0005 pc in
this run. This finite numerical resolution is partly respon-
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are run with γrun. Most of our runs have γinit = γrun (see
Tables 1 and 2). The values of different parameters we used,
along with their justification are described in §3.1 and §3.2.

Any particle going out of our computational domain
(rin < r < rout) is considered to have escaped the boundary,
and is removed from the simulation. Particles going inside rin

are being accreted into the inner boundary, and are counted
in the mass inflow rate (§3.1.2). Effectively, we simulate a
static sink of radius rin, which absorbs the accreting parti-
cles. We tested some other outer boundary conditions that
are discussed in §3.1.5.

2.4 Radiative Heating and Cooling

Radiation from the central SMBH is considered to be in
the form of a spherical X-ray emitting corona (e.g., Proga
2007; Proga et al. 2008; Kurosawa & Proga 2009a), which
irradiates the accretion flow. The X-ray luminosity, LX , is
a fraction fX of the Eddington luminosity, LEdd:

LX = fXLEdd, LEdd =
4πcGmpMBH

σe
, (10)

where c is the speed of light, G is the gravitational constant,
mp is the proton mass, and σe is the Thomson cross section
for the electron. The local X-ray radiation flux at a distance
r from the central source is

FX =
LX

4πr2
. (11)

The heating-cooling function is parametrised in terms of the
photoionization parameter, ξ, which is defined as

ξ ≡
4πFX

n
=

LX

r2n
, (12)

where n = ρ/(µmp) is the local number density of gas. We
use a hydrogen mass fraction of 0.76 to estimate the mean
molecular weight µ.

We include radiative processes in our simulations using
the heating-cooling function from Proga et al. (2000). The
equations are originally from Blondin (1994), who presented
approximate analytic formulae for the heating and cooling
rates of an X-ray irradiated optically-thin gas illuminated by
a 10 keV bremsstrahlung spectrum. The net heating-cooling
rate, L, is given by

ρL = n2 (GCompton + GX − Lb,l) [erg cm−3 s−1], (13)

where each of the components are formulated below. The
rate of Compton heating and cooling,

GCompton = 8.9 × 10−36ξ (TX − 4T ) [erg cm3 s−1]. (14)

The net rate of X-ray photoionization heating and recombi-
nation cooling,

GX = 1.5 × 10−21ξ1/4T−1/2
(

1 −
T
TX

)

[erg cm3 s−1].(15)

The rate of bremsstrahlung and line cooling,

Lb,l = 3.3 × 10−27T 1/2

+
[

1.7 × 10−18 exp
(

−1.3 × 105/T
)

ξ−1T−1/2

+ 10−24
]

δ [erg cm3 s−1]. (16)

We adopt the optically thin version of line cooling in Eq. (16)
by setting δ = 1. In the above, TX is the characteristic

temperature of the bremsstrahlung radiation. We use TX =
1.16× 108 K, corresponding to Blondin (1994)’s value of 10
keV.

The heating-cooling rate is a function of ξ, TX and T .
In the code, L is computed for each active particle, and
added to the specific internal energy (entropy in GADGET-
3) equation of each particle using a semi-implicit method.
In the entropy equation, the non-radiative terms are inte-
grated in an explicit fashion using the simulation timestep,
and then the radiative term is integrated using an implicit
method. This integration methodology is the same as that
of radiative cooling and photoionization heating in a cos-
mological context in the GADGET code (e.g., Katz et al.
1996).

3 RESULTS AND DISCUSSION

3.1 Reproducing Bondi Accretion

First, we perform a series of simulations of Bondi accre-
tion (i.e., there is no radiative heating and cooling) as listed
in Table 1. We use T∞ = 107 K and ρ∞ = 10−19 g/cm3,
which are typical values at 10’s of pc away from SMBH used
in AGN accretion simulations (see e.g., Kurosawa & Proga
2009b, and references therein). Since Rs → 0 as γ → 5/3
(Eq. 6 in §2.1), we use γinit = 1.01 in order to have the
Bondi and sonic radius well between rin and rout. Therefore
the equation of state is almost isothermal, and the simula-
tions are run with the same value of γrun = 1.01. For these
parameters, the Bondi radius is at RB = 3.0 pc, the theo-
retical value of the sonic point is Rs = 1.5 pc, and the Bondi
time is tB = 7.9 × 103 yr.

All the runs in Table 1 have Tinit(r) = T∞. In the Bondi
IC runs, the initial condition is generated from the Bondi
solution, i.e., the initial particles follow ρinit(r) = ρB(r) and
vinit(r) = vB(r). In the uniform IC runs, we start with a
constant initial density of ρ∞ and vinit = 0.

3.1.1 Particle Properties

Figure 1 is a scatter plot showing the properties of particles
vs. radius in a representative Bondi accretion simulation,
Run 7, which has rout = 20 pc and the Bondi IC. The ra-
dial component (vr) of the velocity v and the density profile
follows the Bondi solution quite well, except near the inner
and outer radii. A negative value of vr represents inflowing
mass, whereas positive vr denotes an outflow. We do not
show the non-radial velocity components (i.e., vθ and vφ)
because they are typically 100−1000 times smaller than vr.
The temperature profile is almost isothermal at 107 K (=
T∞), which is expected since we used γrun = 1.01. Examin-
ing the Mach number profile, we see that the gas is subsonic
near rout, passes through a sonic point, and approaches rin

with supersonic velocity (Mach = 6). The location of the
sonic point (where the gas crosses Mach = 1) in the simu-
lation is ∼ 1.5 pc, consistent with the theoretical value of
the Bondi solution (Rs, §3.1). The smoothing length (hsml)
of particles near rin is ∼ 0.12 pc. It is much larger than the
minimum gas smoothing length, which is set to 0.0005 pc in
this run. This finite numerical resolution is partly respon-
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Table 2. Simulations of Spherical Accretion with Radiative Heating and Cooling a

Run rout N Mtot,IC Mpart γinit T∞ RB ρ∞ Tinit LX tend fIN fOUT Ṁin,rin
No. [pc] [M"] [M"] [K] [pc] [g/cm3] [LEdd] [105 yr] [ṀB(γrun, ρ∞, T∞)]

13 20 1283 5.81 × 105 0.277 1.4 107 2.19 10−21 T∞ 0.5 1.0 0.005 0.99 2

14 50 1283 8.23 × 106 3.92 1.4 107 2.19 10−21 T∞ 0.5 2.9 0.001 0.99 1.2

15 20 1283 5.81 × 10−1 2.77 × 10−7 1.4 107 2.19 10−27 T∞ 0.5 1.0 0.005 0.99 2

16 20 2563 5.81 × 10−1 3.46 × 10−8 1.4 107 2.19 10−27 T∞ 5 × 10−4 1.9 0.0052 0.98 2

17 20 1283 5.81 × 105 0.277 1.4 107 2.19 10−21 Trad
b 5 × 10−4 2.9 0.97 0.03 80

18 20 1283 5.65 × 105 0.269 5/3 107 1.84 10−21 Trad 5 × 10−4 3.0 0.97 0.03 80

19 20 1283 1.47 × 107 7.0 5/3 105 183.9 10−21 Trad 5 × 10−4 1.5 0.99 0 2

20 200 2563 1.33 × 109 79.09 5/3 105 183.9 10−21 Trad 5 × 10−4 6.5 0.13 0 6

21 200 2563 4.95 × 108 29.50 5/3 107 1.84 10−21 Trad 5 × 10−4 8.7 0.1 0.012 2000

22 200 1283 1.33 × 107 6.33 5/3 105 183.9 10−23 Trad 5 × 10−4 70 0.9 0.1 5

23 200 2563 1.33 × 107 0.791 5/3 105 183.9 10−23 Trad 5 × 10−4 20 0.3 0.07 4

24 c 200 1.24 × 107 9.77 × 106 0.791 5/3 105 183.9 10−23 TRun23 5 × 10−5 19 0.12 0.01 4

25 200 1.24 × 107 9.77 × 106 0.791 5/3 105 183.9 10−23 TRun23 5 × 10−3 21 0.15 0.02 3.8

26 200 1.24 × 107 9.77 × 106 0.791 5/3 105 183.9 10−23 TRun23 1 × 10−2 22 0.2 0.05 3.4

27 200 1.24 × 107 9.77 × 106 0.791 5/3 105 183.9 10−23 TRun23 2 × 10−2 25 0.03 0.1 0.002

28 200 1.24 × 107 9.77 × 106 0.791 5/3 105 183.9 10−23 TRun23 5 × 10−2 50 0.008 0.99 0.0001

a All the runs have rin = 0.1 pc and γrun = 5/3. Initial conditions are generated using ρinit(r) = ρB(r), and vinit(r) = vB(r).

b Trad ≡ Initial temperatures set from the equilibrium T − ξ radiative heating-cooling function, i.e., the T solution obtained by solving for L = 0 in Eq. (13), assuming γ = 5/3.

c Runs 24 − 28 are started using the particle states from Run 23 at a time = 1.4 Myr as the initial condition, and changing LX in each case.
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Ptcl properties w/ radiative heating & cooling

• red: free-fall scaling

• blue: ZEUS-2d result

• Near the inner radius, 
excess heating by 
artificial viscosity is seen.

• Inflow rate is enhanced 
above Bondi rate, due to 
lower gas temp: T(rout)
<105 K,  T∞=105 K
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• Restart Run #23 at t=1.4 
Myr, Lx/LEdd=5e-4 orig.

• Runs 24-28: increase Lx

• Dramatic decrease in      
at Lx/LEdd>0.01 --- 
transition from net inflow 
to net outflow

Impact of varying Lx on inflow rates
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Non-spherical outflow: Run 26: rout=200pc, Lx/LEdd=0.01

Density

inner 
±40pc

inner 
±4pc

Temperature
due to rad. feedback
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Ptcl Properties: impact of rad feedback
Run 26: rout=200pc,  
Lx/LEdd=0.01,  t=2.0 

Myr

Radial Vel

Density

Temperature Mach #

4 P. Barai et al.

are run with γrun. Most of our runs have γinit = γrun (see
Tables 1 and 2). The values of different parameters we used,
along with their justification are described in §3.1 and §3.2.

Any particle going out of our computational domain
(rin < r < rout) is considered to have escaped the boundary,
and is removed from the simulation. Particles going inside rin

are being accreted into the inner boundary, and are counted
in the mass inflow rate (§3.1.2). Effectively, we simulate a
static sink of radius rin, which absorbs the accreting parti-
cles. We tested some other outer boundary conditions that
are discussed in §3.1.5.

2.4 Radiative Heating and Cooling

Radiation from the central SMBH is considered to be in
the form of a spherical X-ray emitting corona (e.g., Proga
2007; Proga et al. 2008; Kurosawa & Proga 2009a), which
irradiates the accretion flow. The X-ray luminosity, LX , is
a fraction fX of the Eddington luminosity, LEdd:

LX = fXLEdd, LEdd =
4πcGmpMBH

σe
, (10)

where c is the speed of light, G is the gravitational constant,
mp is the proton mass, and σe is the Thomson cross section
for the electron. The local X-ray radiation flux at a distance
r from the central source is

FX =
LX

4πr2
. (11)

The heating-cooling function is parametrised in terms of the
photoionization parameter, ξ, which is defined as

ξ ≡
4πFX

n
=

LX

r2n
, (12)

where n = ρ/(µmp) is the local number density of gas. We
use a hydrogen mass fraction of 0.76 to estimate the mean
molecular weight µ.

We include radiative processes in our simulations using
the heating-cooling function from Proga et al. (2000). The
equations are originally from Blondin (1994), who presented
approximate analytic formulae for the heating and cooling
rates of an X-ray irradiated optically-thin gas illuminated by
a 10 keV bremsstrahlung spectrum. The net heating-cooling
rate, L, is given by

ρL = n2 (GCompton + GX − Lb,l) [erg cm−3 s−1], (13)

where each of the components are formulated below. The
rate of Compton heating and cooling,

GCompton = 8.9 × 10−36ξ (TX − 4T ) [erg cm3 s−1]. (14)

The net rate of X-ray photoionization heating and recombi-
nation cooling,

GX = 1.5 × 10−21ξ1/4T−1/2
(

1 −
T
TX

)

[erg cm3 s−1].(15)

The rate of bremsstrahlung and line cooling,

Lb,l = 3.3 × 10−27T 1/2

+
[

1.7 × 10−18 exp
(

−1.3 × 105/T
)

ξ−1T−1/2

+ 10−24
]

δ [erg cm3 s−1]. (16)

We adopt the optically thin version of line cooling in Eq. (16)
by setting δ = 1. In the above, TX is the characteristic

temperature of the bremsstrahlung radiation. We use TX =
1.16× 108 K, corresponding to Blondin (1994)’s value of 10
keV.

The heating-cooling rate is a function of ξ, TX and T .
In the code, L is computed for each active particle, and
added to the specific internal energy (entropy in GADGET-
3) equation of each particle using a semi-implicit method.
In the entropy equation, the non-radiative terms are inte-
grated in an explicit fashion using the simulation timestep,
and then the radiative term is integrated using an implicit
method. This integration methodology is the same as that
of radiative cooling and photoionization heating in a cos-
mological context in the GADGET code (e.g., Katz et al.
1996).

3 RESULTS AND DISCUSSION

3.1 Reproducing Bondi Accretion

First, we perform a series of simulations of Bondi accre-
tion (i.e., there is no radiative heating and cooling) as listed
in Table 1. We use T∞ = 107 K and ρ∞ = 10−19 g/cm3,
which are typical values at 10’s of pc away from SMBH used
in AGN accretion simulations (see e.g., Kurosawa & Proga
2009b, and references therein). Since Rs → 0 as γ → 5/3
(Eq. 6 in §2.1), we use γinit = 1.01 in order to have the
Bondi and sonic radius well between rin and rout. Therefore
the equation of state is almost isothermal, and the simula-
tions are run with the same value of γrun = 1.01. For these
parameters, the Bondi radius is at RB = 3.0 pc, the theo-
retical value of the sonic point is Rs = 1.5 pc, and the Bondi
time is tB = 7.9 × 103 yr.

All the runs in Table 1 have Tinit(r) = T∞. In the Bondi
IC runs, the initial condition is generated from the Bondi
solution, i.e., the initial particles follow ρinit(r) = ρB(r) and
vinit(r) = vB(r). In the uniform IC runs, we start with a
constant initial density of ρ∞ and vinit = 0.

3.1.1 Particle Properties

Figure 1 is a scatter plot showing the properties of particles
vs. radius in a representative Bondi accretion simulation,
Run 7, which has rout = 20 pc and the Bondi IC. The ra-
dial component (vr) of the velocity v and the density profile
follows the Bondi solution quite well, except near the inner
and outer radii. A negative value of vr represents inflowing
mass, whereas positive vr denotes an outflow. We do not
show the non-radial velocity components (i.e., vθ and vφ)
because they are typically 100−1000 times smaller than vr.
The temperature profile is almost isothermal at 107 K (=
T∞), which is expected since we used γrun = 1.01. Examin-
ing the Mach number profile, we see that the gas is subsonic
near rout, passes through a sonic point, and approaches rin

with supersonic velocity (Mach = 6). The location of the
sonic point (where the gas crosses Mach = 1) in the simu-
lation is ∼ 1.5 pc, consistent with the theoretical value of
the Bondi solution (Rs, §3.1). The smoothing length (hsml)
of particles near rin is ∼ 0.12 pc. It is much larger than the
minimum gas smoothing length, which is set to 0.0005 pc in
this run. This finite numerical resolution is partly respon-
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Time Evolution of a Single Ptcl

• Start (triangle): r=53 pc, 
t=1.4 Myr

• End (square): r=1pc, t=1.8 
Myr

• + symbol: dt=0.004 Myr

Run 26: rout=200pc,  
Lx/LEdd=0.01,  t=2.0 

Myr
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Figure 4. Time evolution of a single particle in Run 26 as it moves inward. The starting point, from the initial condition at t = 1.4
Myr when it is at r = 53 pc, is denoted by the triangle in each panel. The ending point at t = 1.8 Myr when it is at r = 0.99 pc is
denoted by the square in each panel. The plus signs denote the relevant quantity in uniform intervals of 0.004 Myr, except the last two
points (inner-most in r) which are separated by ∼ 0.001 Myr. The top two rows show four radial properties: radial and angular velocities,
density, temperature and entropy. The bottom row plots the evolution in the temperature vs. photo- and pressure-ionization parameter
planes, where the direction of progress of time is indicated by arrows. The slopes of three characteristic processes are shown as the blue
lines in the bottom row: adiabatic free-fall (T ∼ ξ2, and T ∼ Ξ−2) as the dotted line, constant-pressure (T ∼ ξ, and Ξ = constant) as the
dashed line, and constant-density (ξ = constant, and T ∼ Ξ−1) as the dash-dotted line. These slopes are used to describe TI in §3.1.1.
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Non-spherical outflow: Run 27: rout=200pc, Lx/LEdd=0.02

Density
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Ptcl Properties: impact of rad feedback

Run 27: rout=200pc,  
Lx/LEdd=0.02
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Non-spherical outflow: Run 28: rout=200pc, Lx/LEdd=0.05

Density

± 200pc

Temperature

due to rad. feedback
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Run 28
18 P. Barai et al.

Figure 8. Time evolution of gas in Run 28 (LX/LEdd = 0.05) showing the whole computational volume 200 pc of the [y − z] plane
through x = 0. The gas density is in the left panel of each row and temperature in the right panel, overplotted with the velocity vector
arrows. Rows correspond to the times: t = 1.8 Myr (top), and t = 3.0 Myr (bottom). The gas is outflowing in almost all over the volume,
except near the very center toward the right in the plotted plane. A hot, less-dense bubble is well-formed and buoyantly rises from the
center along the negative z-axis. The rest of the gas outflow remains spherically symmetric.
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Conclusions

• GADGET-3 SPH code can reproduce the spherical Bondi 
accretion rate properly, but with some limitations.  

• spurious heating by Artificial Viscosity near rin  &   
artificial outflow at rout due to outer BC are problems 
for SPH.

• non-spherical in/outflow develops due to rad. feedback 
via thermal instability,  even in the simplest situation that 
we studied --- connection with NLR?  (Paper II)

• Future work: include rad. pressure, rotation, diff 
geometry, comparison w/ NLR obs, connect with 
cosmological sim
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Fragmentation in BH Accretion Flow 11

Figure 1. Cross-sections in Run 26 (LX/LEdd = 0.01) showing the inner 30 pc of the [x−y] plane through z = 0 at a time t = 2.047 Myr.
The gas density is in the top-left panel, temperature in the top-right, photoionization parameter in the bottom-left, and Mach number
in the bottom-right, overplotted with the velocity vector arrows. It shows colder, denser filament-like structures, with hotter, less-dense
gas in between, both components accreting in (with the colder phase moving in faster), all of which has been caused by non-spherical
cooling and fragmentation. This and all the other cross-section images in this paper have been generated using SPLASH (Price 2007).
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12 P. Barai et al.

Figure 2. Zoom-in of the inner 4 pc of the [x−y] plane through z = 0 at a time t = 2.047 Myr in Run 26 (LX/LEdd = 0.01). The panels
represent gas density in the top-left, temperature in the top-right, photoionization parameter in the bottom-left, and Mach number in
the bottom-right. It shows stretching of the colder clumps as they fall in toward the center. They remain denser, however get heated up
at r < 1 pc, mostly by adiabatic compression. Note that the color scheme in this cross-section has been changed and it has been plotted
without the velocity vectors, in order to show the small-scale features clearly.
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Run 27 16 P. Barai et al.

Figure 7. Time evolution of gas in Run 27 (LX/LEdd = 0.02) showing the inner 100 pc of the [x − z] plane through y = 0. The gas
density is in the left panel of each row and temperature in the right panel, overplotted with the velocity vector arrows. Rows correspond
to the times: t = 1.86 Myr (top), t = 2.12 Myr (middle), and t = 2.46 Myr (bottom). A central spherically-symmetric outflow inside
r ∼ 40 pc can be seen in the top row, with surrounding gas starting to cool and clump. The spherical-symmetry of the outflow is lost in
the middle row, and the formation of a hot, less-dense bubble can be seen toward the right just off-center. The surrounding cool clumps
are well-formed and fragmented, and are moving inward. The bottom row shows an inhomogeneous mixture of multi-phase gas motion.
The denser clumps continue falling into the center, but getting heated up as they move in. The hotter gas moves outward, with signatures
of few hot bubbles buoyantly rising from the center.
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