

Gas Accretion onto a Supermassive Black Hole: a step to modeling AGN feedback in cosmological simulations

Ken Nagamine Univ. of Nevada, Las Vegas (UNLV)

$$
\begin{array}{r}
\text { Collaborators: Paramita Barai (UNLV / INAF Trieste) } \\
\text { Daniel Proga (UNLV) } \\
\hline
\end{array}
$$

Outline

- Intro / Motivation
- The simplest case: spherical Bondi accretion
- Include radiative cooling / heating -- radiative feedback by X-rays

Barai, Proga, KN, 20 I I, MNRAS, in press (arXiv: I I 02.3925)

- Non-spherical accretion flow, fragmentation due to thermal instability

$$
\text { Barai, Proga, KN, } 201 \text { I, in prep. (Paper II) }
$$

- Conclusions

Motivation

Small-scale sims

Cosmological sims

(e.g. Di Matteo+, Booth \& Schaye, ...)

- Still a large gap btw small-scale sims \& cosmological sims.

$$
(\lesssim \mathrm{pc})
$$

(~kpc - 10 Mpc)

- Cosmo sims uses ad-hoc AGN accretion models as "sub-grid" physics.
- How well can a cosmological SPH code (e.g. GADGET) handle accretion onto a SMBH?

The Bondi Accretion Problem

- Spherically symmetric accretion onto a central mass (Bondi 1952)
- Gas is at rest at infinity, with $\rho_{\infty} \& p_{\infty}$. Increase in the central mass is ignored.
- Two equations are solved:

$$
\begin{gathered}
\dot{M}=-4 \pi r^{2} \rho v=\text { constant. (Continuity Eq.) } \\
\frac{v^{2}}{2}+\left(\frac{\gamma}{\gamma-1}\right) \frac{p_{\infty}}{\rho_{\infty}}\left[\left(\frac{\rho}{\rho_{\infty}}\right)^{\gamma-1}-1\right]=\frac{G M_{B H}}{r}, \quad \text { (Bernoulli's Eq.) }
\end{gathered}
$$

- One of the solutions:

$$
\dot{M}_{B}=4 \pi \lambda_{c} \frac{\left(G M_{B H}\right)^{2}}{c_{s, \infty}^{3}} \rho_{\infty}, \quad \quad \lambda_{c}=\left(\frac{1}{2}\right)^{\frac{(\gamma+1)}{2(\gamma-1)}}\left(\frac{5-3 \gamma}{4}\right)^{\frac{(3 \gamma-5)}{2(\gamma-1)}} .
$$

- Characteristic scales:

Bondi radius: $\quad R_{B}=\frac{G M_{B H}}{c_{s, \infty}^{2}} . \quad$ Sonic radius: $R_{s}=\left(\frac{5-3 \gamma}{4}\right) R_{B}$.
Bondi time: $\quad t_{B}=\frac{R_{B}}{c_{s}}=\frac{G M_{B H}}{c_{s, \infty}^{3}}$.

Simplest Case: Spherical Bondi Accretion Flow onto a SMBH

- GADGET-3: 3-d cosmological SPH/ N -body code (Springel '05)
- Central SMBH 10^{8} M。 represented by a pseudoNewtonian Paczynsky \& Wiita (1980) potential
- $r_{\text {out }}=5-20 \mathrm{pc}, \mathrm{N}_{\text {ptcl }}=64^{3}-128^{3}$
- Set IC to uniform/spherical Bondi flow $w / \gamma=1.01, \rho_{\infty}=10^{-19}$ $\mathrm{g} / \mathrm{cm}^{3}, \mathrm{~T}_{\infty}=10^{7} \mathrm{~K}, \mathrm{~T}_{\text {init }}=\mathrm{T}_{\infty}$
- Corresponding Bondi solution: $\mathrm{R}_{\mathrm{B}}=3 \mathrm{pc}, \mathrm{R}_{\text {sonic }}=1.5 \mathrm{pc}, \mathrm{t}_{\mathrm{B}}=7.9 \mathrm{e} 3 \mathrm{yr}$
- All runs: $\boldsymbol{r}_{\text {in }}=\mathbf{0}$. $1 \mathrm{pc}, \gamma=1.0 \mid$

3-d spherical volume, vacuum
boundary condition

Run No.	$\begin{gathered} r_{\mathrm{out}} \\ {[\mathrm{pc}]} \end{gathered}$	N b	IC	$\begin{gathered} M_{\mathrm{tot}, \mathrm{IC}}{ }^{\mathrm{c}} \\ {\left[M_{\odot}\right]} \end{gathered}$	$\begin{gathered} M_{\text {part }}{ }^{\mathrm{d}} \\ {\left[M_{\odot}\right]} \end{gathered}$	$\begin{gathered} t_{\mathrm{end}}{ }^{\mathrm{e}} \\ {\left[10^{4} \mathrm{yr}\right]} \end{gathered}$
1	5	64^{3}	Uniform ${ }^{\text {i }}$	3.96×10^{5}	1.51	3
2	10	64^{3}	Uniform	6.19×10^{6}	23.61	7.2
3	50	128^{3}	Uniform	7.73×10^{8}	368.60	20
4	5	64^{3}	Bondi ${ }^{\text {j }}$	1.81×10^{6}	6.89	2
5	10	64^{3}	Bondi	9.76×10^{6}	37.23	8
6	10	128^{3}	Bondi	9.76×10^{6}	4.65	8
7	20	128^{3}	Bondi	6.24×10^{7}	29.75	8
$7 a^{\mathrm{k}}$	20	128^{3}	Bondi	6.24×10^{7}	29.75	80
$7 b^{\text {l }}$	20	128^{3}	Bondi	6.24×10^{7}	29.75	100
8	50	128^{3}	Bondi	8.48×10^{8}	404.35	16
9	20	128^{3}	$\rho_{B}, v_{\text {init }}=0$	6.24×10^{7}	29.75	8
10	20	$128{ }^{3}$	Uniform	4.95×10^{7}	23.60	8
11	20	128^{3}	Hernquist ${ }^{\text {m }}$	6.24×10^{7}	29.75	7.2
12^{n}	20	128^{3}	Bondi	6.24×10^{7}	29.75	8

Example: Properties of Particles

Run 7:

- $\mathrm{r}_{\text {out }}=20 \mathrm{pc}, \mathrm{N}_{\mathrm{ptcl}}=128^{3}$
- Snap at $\mathrm{t}=2 \mathrm{t}_{\mathrm{B}}=1.6 \mathrm{e} 4 \mathrm{yr}$
- Follows the Bondi solution (red curve) well except the very inner part
- Inner part: supersonic (M~6), outerpart: subsonic

Mass Inflow Rates at $\mathbf{r}_{\text {in }}$

- the larger rout, the longer duration of Bondi inflow rate
- If started from a Bondi flow, Bondi rate is achieved quickly.
- After a while, the inflow rate decreases due to the artificial outflow at the outer boundary.
- Greater sim. volume reduces this effect on mass inflow.

Radiative Heating \& Cooling

- Xray emitting corona irradiates the accretion flow

$$
L_{X}=f_{X} L_{\mathrm{Edd}}, \quad L_{\mathrm{Edd}}=\frac{4 \pi c G m_{p} M_{B H}}{\sigma_{e}}, \quad \text { Flux: } \quad F_{X}=\frac{L_{X}}{4 \pi r^{2}} .
$$

- Approx. analytic heating/cooling rates from Blondin '94; opt-thin gas illuminated by a 10 keV bremsstrahlung.

$$
\text { net rate: } \quad \rho \mathcal{L}=n^{2}\left(G_{\text {Compton }}+G_{X}-L_{b, l}\right) \quad\left[\mathrm{erg} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}\right],
$$

Compton h/c rate: $\quad G_{\text {Compton }}=8.9 \times 10^{-36} \xi\left(T_{X}-4 T\right) \quad\left[\mathrm{erg} \mathrm{cm}^{3} \mathrm{~s}^{-1}\right]$.
Net Xray photoioniz. heating and recomb. cooling rate:

$$
G_{X}=1.5 \times 10^{-21} \xi^{1 / 4} T^{-1 / 2}\left(1-\frac{T}{T_{X}}\right) \quad\left[\operatorname{erg~cm}{ }^{3} \mathrm{~s}^{-1}\right]
$$

$$
L_{b, l}=3.3 \times 10^{-27} T^{1 / 2}
$$

$$
+\left[1.7 \times 10^{-18} \exp \left(-1.3 \times 10^{5} / T\right) \xi^{-1} T^{-1 / 2}\right.
$$

$$
\left.+10^{-24}\right] \delta \quad\left[\mathrm{erg} \mathrm{~cm}^{3} \mathrm{~s}^{-1}\right]
$$

$$
\mathrm{T}_{\mathrm{X}}=\mathrm{I} .16 \times 10^{8} \mathrm{~K} \quad(=10 \mathrm{keV}, \text { Blondin '94) }
$$

Runs with radiative cooling/heating

Run No.	$\begin{gathered} r_{\mathrm{out}} \\ {[\mathrm{pc}]} \end{gathered}$	N	$\begin{gathered} M_{\mathrm{tot}, \mathrm{IC}} \\ {\left[M_{\odot}\right]} \end{gathered}$	$\begin{gathered} M_{\text {part }} \\ {\left[M_{\odot}\right]} \end{gathered}$	$\gamma_{\text {init }}$	$\begin{gathered} T_{\infty} \\ {[\mathrm{K}]} \end{gathered}$	$\begin{aligned} & R_{B} \\ & {[\mathrm{pc}]} \end{aligned}$	$\begin{gathered} \rho_{\infty} \\ {\left[\mathrm{g} / \mathrm{cm}^{3}\right]} \end{gathered}$	$T_{\text {init }}$	$\begin{gathered} L_{X} \\ {\left[L_{\mathrm{Edd}}\right]} \end{gathered}$	$\begin{gathered} t_{\mathrm{end}} \\ {\left[10^{5} \mathrm{yr}\right]} \end{gathered}$
13	20	128^{3}	5.81×10^{5}	0.277	1.4	10^{7}	2.19	10^{-21}	T_{∞}	0.5	1.0
14	50	128^{3}	8.23×10^{6}	3.92	1.4	10^{7}	2.19	10^{-21}	T_{∞}	0.5	2.9
15	20	128^{3}	5.81×10^{-1}	2.77×10^{-7}	1.4	10^{7}	2.19	10^{-27}	T_{∞}	0.5	1.0
16	20	256^{3}	5.81×10^{-1}	3.46×10^{-8}	1.4	10^{7}	2.19	10^{-27}	T_{∞}	5×10^{-4}	1.9
17	20	128^{3}	5.81×10^{5}	0.277	1.4	10^{7}	2.19	10^{-21}	$T_{\text {rad }}{ }^{\text {b }}$	5×10^{-4}	2.9
18	20	128^{3}	5.65×10^{5}	0.269	5/3	10^{7}	1.84	10^{-21}	$T_{\text {rad }}$	5×10^{-4}	3.0
19	20	128^{3}	1.47×10^{7}	7.0	$5 / 3$	10^{5}	183.9	10^{-21}	$T_{\text {rad }}$	5×10^{-4}	1.5
20	200	$256{ }^{3}$	1.33×10^{9}	79.09	5/3	10^{5}	183.9	10^{-21}	$T_{\text {rad }}$	5×10^{-4}	6.5
21	200	256^{3}	4.95×10^{8}	29.50	5/3	10^{7}	1.84	10^{-21}	$T_{\text {rad }}$	5×10^{-4}	8.7
22	200	128^{3}	1.33×10^{7}	6.33	5/3	10^{5}	183.9	10^{-23}	$T_{\text {rad }}$	5×10^{-4}	70
23	200	256^{3}	1.33×10^{7}	0.791	5/3	10^{5}	183.9	10^{-23}	$T_{\text {rad }}$	5×10^{-4}	20
$24^{\text {c }}$	200	1.24×10^{7}	9.77×10^{6}	0.791	5/3	10^{5}	183.9	10^{-23}	$T_{\text {Run23 }}$	5×10^{-5}	19
25	200	1.24×10^{7}	9.77×10^{6}	0.791	$5 / 3$	10^{5}	183.9	10^{-23}	$T_{\text {Run23 }}$	5×10^{-3}	21
26	200	1.24×10^{7}	9.77×10^{6}	0.791	$5 / 3$	10^{5}	183.9	10^{-23}	TRun23	1×10^{-2}	22
27	200	1.24×10^{7}	9.77×10^{6}	0.791	$5 / 3$	10^{5}	183.9	10^{-23}	TRun23	2×10^{-2}	25
28	200	1.24×10^{7}	9.77×10^{6}	0.791	5/3	10^{5}	183.9	10^{-23}	$T_{\text {Run23 }}$	5×10^{-2}	50

Ptcl properties w/ radiative heating \& cooling

Representative run:

- red: free-fall scaling
- blue:ZEUS-2d result
- Near the inner radius, excess heating by artificial viscosity is seen.
- Inflow rate is enhanced above Bondi rate, due to lower gas temp: T (rout) $<10^{5} \mathrm{~K}, \mathrm{~T}_{\infty}=10^{5} \mathrm{~K}$

Run \#23: $\mathrm{t}=1 \mathrm{Myr}, \mathrm{Lx}_{\mathrm{x}}=5 \mathrm{e}-4 \mathrm{~L}_{\text {Edd }}, \gamma=5 / 3$ $r_{\text {out }}=200 \mathrm{pc}, 256^{3} \mathrm{ptcls}$

green: free-fall scaling w/ only adiabatic term
$\mathrm{T}_{\mathrm{ff} \text {,ar: }}$ solving internal energy eq. w/ both radiative \& adiabatic term

Impact of varying Lx on inflow rates

- Restart Run \#23 at t=1.4 Myr, Lx/Ledd=5e-4 orig.
- Runs 24-28: increase Lx
- Dramatic decrease in $\dot{M}_{i n}$ at $L x / L_{\text {Edd }}>0.01$ transition from net inflow to net outflow

Thermal instability due to rad. feedback

Non-spherical outflow: Run 26: rout $=200 \mathrm{pc}, \mathrm{Lx} / \mathrm{L}_{\mathrm{Edd}}=0.0 \mathrm{I}$

due to rad. feedback

Ptcl Properties: impact of rad feedback

$$
\begin{gathered}
\text { Run 26: } \text { rout }=200 \mathrm{pc}, \\
L^{2} / \mathrm{L}_{\mathrm{Edd}}=0.0 \mathrm{O}, \mathrm{t}=2.0 \\
\mathrm{Myr}
\end{gathered}
$$

Large scatter due to thermal instability --cold inflow and hot

outflow

Photoionization parameter:

$$
\xi \equiv \frac{4 \pi F_{X}}{n}=\frac{L_{X}}{r^{2} n},
$$

Outflowing gas near outer BC

Time Evolution of a Single Ptcl

Run 26: rout $=200 \mathrm{pc}$, $L x / L_{\text {Edd }}=0.0 \mathrm{I}, \mathrm{t}=2.0$ Myr

- Start (triangle): $\mathrm{r}=53 \mathrm{pc}$, $\mathrm{t}=1.4 \mathrm{Myr}$
- End (square): r=lpc, t=l. 8 Myr
- + symbol: dt=0.004 Myr

Non-spherical outflow: Run $27: r_{\text {out }}=200 \mathrm{pc}, \mathrm{Lx} / L_{\text {Edd }}=0.02$

due to rad. feedback
Temperature

Ptcl Properties: impact of rad feedback

Run 27: rout $=200 \mathrm{pc}$, Lx/LEdd $=0.02$

Non-spherical outflow:
 Run 28: $r_{\text {out }}=200 p c, L x / L_{\text {Edd }}=0.05$

due to rad. feedback

Temperature
gamma_5by3 / Run37 / LxByLedd_5e-2-IC_snap70 (1.4 - 5 Myr)

Density

$\pm 200 p c$

Run 28

${ }_{20} \log T$

Conclusions

- GADGET-3 SPH code can reproduce the spherical Bondi accretion rate properly, but with some limitations.
- spurious heating by Artificial Viscosity near $r_{\text {in }}$ \& artificial outflow at rout due to outer BC are problems for SPH.
- non-spherical in/outflow develops due to rad. feedback via thermal instability, even in the simplest situation that we studied --- connection with NLR? (Paper II)
- Future work: include rad. pressure, rotation, diff geometry, comparison w/ NLR obs, connect with cosmological sim

Run 26: $\mathrm{rout}=200 \mathrm{pc}, \mathrm{Lx} / \mathrm{L}_{\text {edd }}=0.01$

$\pm 30 \mathrm{pc}$ range $\quad(\mathrm{t}=2.047 \mathrm{Myr})$

colder, denser filament-like structures due to non-spherical fragmentation

Run 26: $r_{\text {out }}=200 \mathrm{pc}, L x / L_{\text {Edd }}=0.01$
Zoom-in: inner 4 pc

uo!fDz!uo!otoud 6ol

Run 27

$r_{\text {out }}=200 p c$,
$L x / L_{E d d}=0.02$

$\mathrm{t}=1.86 \mathrm{Myr}$

$\mathrm{t}=2.12 \mathrm{Myr}$

$\mathrm{t}=2.46 \mathrm{Myr}$

$\log T$

$\log \rho_{\text {gas }}$

