

Gas Accretion onto a Supermassive Black Hole: a step to modeling AGN feedback in cosmological simulations

> Ken Nagamine Univ. of Nevada, Las Vegas (UNLV)

Collaborators: Paramita Barai (UNLV / INAF Trieste) Daniel Proga (UNLV)

Outline

- Intro / Motivation
- The simplest case: spherical Bondi accretion
- Include radiative cooling / heating -- radiative feedback
 by X-rays
 Barai, Proga, KN, 2011, MNRAS, in press (arXiv:1102.3925)
- Non-spherical accretion flow, fragmentation due to thermal instability
 Barai, Proga, KN, 2011, in prep. (Paper II)
- Conclusions

Motivation

- Still a large gap btw small-scale sims & cosmological sims. (≈ pc) (~kpc - 10 Mpc)
- Cosmo sims uses ad-hoc AGN accretion models as "sub-grid" physics.
- How well can a cosmological SPH code (e.g. GADGET) handle accretion onto a SMBH?

The Bondi Accretion Problem

- Spherically symmetric accretion onto a central mass (Bondi 1952)
- Gas is at rest at infinity, with $\rho_{\infty} \& p_{\infty}$. Increase in the central mass is ignored.
- Two equations are solved:

$$\dot{M} = -4\pi r^2 \rho v = \text{constant.} \quad \text{(Continuity Eq.)}$$
$$\frac{v^2}{2} + \left(\frac{\gamma}{\gamma - 1}\right) \frac{p_{\infty}}{\rho_{\infty}} \left[\left(\frac{\rho}{\rho_{\infty}}\right)^{\gamma - 1} - 1 \right] = \frac{GM_{BH}}{r}, \quad \text{(Bernoulli's Eq.)}$$

• One of the solutions:

$$\dot{M}_B = 4\pi\lambda_c \frac{(GM_{BH})^2}{c_{s,\infty}^3} \rho_{\infty}, \qquad \lambda_c = \left(\frac{1}{2}\right)^{\frac{(\gamma+1)}{2(\gamma-1)}} \left(\frac{5-3\gamma}{4}\right)^{\frac{(3\gamma-5)}{2(\gamma-1)}}.$$

• Characteristic scales:

Bondi radius:
$$R_B = \frac{GM_{BH}}{c_{s,\infty}^2}$$
. **Sonic radius:** $R_s = \left(\frac{5-3\gamma}{4}\right)R_B$.
Bondi time: $t_B = \frac{R_B}{c_s} = \frac{GM_{BH}}{c_{s,\infty}^3}$.

<u>Simplest Case: Spherical Bondi</u> <u>Accretion Flow onto a SMBH</u>

- GADGET-3: 3-d cosmological SPH/ N-body code (Springel '05)
- Central SMBH 10⁸ M_☉ represented by a pseudo-Newtonian Paczynsky & Wiita (1980) potential
- r_{out}=5-20 pc, N_{ptcl}=64³-128³
- Set IC to uniform/spherical Bondi flow w/ γ =1.01, ρ_{∞} =10⁻¹⁹ g/cm³, T_{\infty}=10⁷K, T_{init}=T_{\infty}
- Corresponding Bondi solution: R_B=3pc, R_{sonic}=1.5pc, t_B=7.9e3yr
- All runs: **r**_{in}=**0.1pc**, γ=1.01

3-d spherical volume, vacuum boundary condition

Run No.	$r_{ m out} \ [m pc]$	N ^b	IC	${M_{ m tot,IC}}$ c $[M_{\odot}]$	${M_{ m part}}^{ m d}$ $[M_{\odot}]$	$t_{ m end} {}^{ m e}$ $[10^4 { m yr}]$	
1	5	64^{3}	Uniform ⁱ	3.96×10^{5}	1.51	3	
2	10	64^{3}	Uniform	6.19×10^6	23.61	7.2	
3	50	128^{3}	Uniform	7.73×10^{8}	368.60	20	
4	5	64^{3}	Bondi ^j	1.81×10^6	6.89	2	
5	10	64^{3}	Bondi	9.76×10^{6}	37.23	8	
6	10	128^{3}	Bondi	9.76×10^{6}	4.65	8	
7	20	128 ³	Bondi	6.24×10^{7}	29.75	8	
1	20	120	Donar	0.24 × 10	20.10	0	
$7a^{\mathrm{k}}$	20	128^{3}	Bondi	6.24×10^7	29.75	80	
$7b^{-1}$	20	128^{3}	Bondi	6.24×10^7	29.75	100	
8	50	128^{3}	Bondi	8.48×10^{8}	404.35	16	
9	20	128^{3}	$\rho_B, v_{\text{init}} = 0$	6.24×10^{7}	29.75	8	
10	20	128^{3}	Uniform	4.95×10^{7}	23.60	8	
11	20	128^{3}	Hernquist $^{\rm m}$	6.24×10^7	29.75	7.2	
12 ⁿ	20	128^{3}	Bondi	6.24×10^{7}	29.75	8	

Example: Properties of Particles

Mass Inflow Rates at rin

- the larger r_{out}, the longer duration of Bondi inflow rate
- If started from a Bondi flow, Bondi rate is achieved quickly.
- After a while, the inflow rate decreases due to the artificial outflow at the outer boundary.
- Greater sim. volume reduces this effect on mass inflow.

cm°3

Density (g

Radiative Heating & Cooling

• Xray emitting corona irradiates the accretion flow

$$L_X = f_X L_{\text{Edd}}, \qquad L_{\text{Edd}} = \frac{4\pi c G m_p M_{BH}}{\sigma_e}, \qquad \qquad \mathbf{Flux:} \quad F_X = \frac{L_X}{4\pi r^2}.$$

 Approx. analytic heating/cooling rates from Blondin '94; opt-thin gas illuminated by a 10 keV bremsstrahlung.

net rate: $\rho \mathcal{L} = n^2 (G_{\text{Compton}} + G_X - L_{b,l})$ [erg cm⁻³ s⁻¹],Compton h/c rate: $G_{\text{Compton}} = 8.9 \times 10^{-36} \xi (T_X - 4T)$ [erg cm³ s⁻¹].Net Xray photoioniz. heating
and recomb. cooling rate: $G_X = 1.5 \times 10^{-21} \xi^{1/4} T^{-1/2} \left(1 - \frac{T}{T_X}\right)$ [erg cm³ s⁻¹].Brems. and line cooling rate: $L_{b,l} = 3.3 \times 10^{-27} T^{1/2}$
 $+ [1.7 \times 10^{-18} \exp(-1.3 \times 10^5/T) \xi^{-1} T^{-1/2}$
 $+ 10^{-24}] \delta$ [erg cm³ s⁻¹].

 $T_X=1.16 \times 10^8 \text{ K}$ (=10keV, Blondin '94)

Runs with radiative cooling/heating

Run No.	$r_{ m out} \ [m pc]$	N	$M_{ m tot,IC}$ $[M_{\odot}]$	$M_{ m part}$ $[M_{\odot}]$	$\gamma_{ m init}$	T_{∞} [K]	R_B [pc]	$ ho_{\infty}$ [g/cm ³]	T_{init}	L_X $[L_{ m Edd}]$	$t_{ m end} \ [10^5 \ { m yr}]$
$\begin{array}{c} 13 \\ 14 \end{array}$	$\begin{array}{c} 20\\ 50 \end{array}$	$\frac{128^3}{128^3}$	5.81×10^{5} 8.23×10^{6}	$\begin{array}{c} 0.277\\ 3.92 \end{array}$	$\begin{array}{c} 1.4 \\ 1.4 \end{array}$	$\frac{10^7}{10^7}$	$\begin{array}{c} 2.19 \\ 2.19 \end{array}$	10^{-21} 10^{-21}	T_{∞} T_{∞}	$\begin{array}{c} 0.5 \\ 0.5 \end{array}$	$1.0\\2.9$
$15\\16$	20 20	$\frac{128^3}{256^3}$	5.81×10^{-1} 5.81×10^{-1}	2.77×10^{-7} 3.46×10^{-8}	$\begin{array}{c} 1.4 \\ 1.4 \end{array}$	$\frac{10^7}{10^7}$	$2.19 \\ 2.19$	10^{-27} 10^{-27}	T_{∞} T_{∞}	$\begin{array}{c} 0.5\\ 5\times 10^{-4}\end{array}$	$\begin{array}{c} 1.0\\ 1.9\end{array}$
17 18 19	20 20 20	128^3 128^3 128^3	5.81×10^{5} 5.65×10^{5} 1.47×10^{7}	$0.277 \\ 0.269 \\ 7.0$	$1.4 \\ 5/3 \\ 5/3$	10^{7} 10^{7} 10^{5}	2.19 1.84 183.9	10^{-21} 10^{-21} 10^{-21}	${T_{ m rad}}^{ m b}$ ${T_{ m rad}}$ ${T_{ m rad}}$	5×10^{-4} 5×10^{-4} 5×10^{-4}	$2.9 \\ 3.0 \\ 1.5$
20 21	$200\\200$	256^{3} 256^{3}	1.33×10^9 4.95×10^8	79.09 29.50	5/3 5/3	10^{5} 10^{7}	$183.9\\1.84$	10^{-21} 10^{-21}	$T_{ m rad}$ $T_{ m rad}$	5×10^{-4} 5×10^{-4}	$\begin{array}{c} 6.5 \\ 8.7 \end{array}$
22 23	200 200	$\frac{128^3}{256^3}$	1.33×10^{7} 1.33×10^{7}	6.33 0.791	$\frac{5/3}{5/3}$	$\frac{10^{5}}{10^{5}}$	$\frac{183.9}{183.9}$	10^{-23} 10^{-23}	$\frac{T_{\rm rad}}{T_{\rm rad}}$	$\frac{5 \times 10^{-4}}{5 \times 10^{-4}}$	70 20
24 ^c 25 26	$200 \\ 200 \\ 200 \\ 200$	1.24×10^{7} 1.24×10^{7} 1.24×10^{7}	9.77×10^{6} 9.77×10^{6} 9.77×10^{6}	0.791 0.791 0.791	5/3 5/3 5/3	10^{5} 10^{5} 10^{5}	183.9 183.9 183.9	10^{-23} 10^{-23} 10^{-23}	T_{Run23} T_{Run23} T_{Run22}	5×10^{-5} 5×10^{-3} 1×10^{-2}	19 21 22
20 27 28	200 200	1.24×10^{7} 1.24×10^{7} 1.24×10^{7}	9.77×10^{6} 9.77×10^{6}	0.791 0.791	5/3 5/3	$\frac{10^5}{10^5}$	183.9 183.9	10^{-23} 10^{-23}	$T_{ m Run23}$ $T_{ m Run23}$ $T_{ m Run23}$	$ \begin{array}{c} 1 \times 10 \\ 2 \times 10^{-2} \\ 5 \times 10^{-2} \end{array} $	$25 \\ 50$

Ptcl properties w/ radiative heating & cooling

Representative run:

- red: free-fall scaling
- blue: ZEUS-2d result
- Near the inner radius, excess heating by artificial viscosity is seen.
- Inflow rate is enhanced above Bondi rate, due to lower gas temp: T(r_{out}) <10⁵ K, T∞=10⁵ K

green: free-fall scaling w/ only adiabatic term

T_{ff,ar}: solving internal energy eq. w/ both radiative & adiabatic term

Impact of varying Lx on inflow rates

- Restart Run #23 at t=1.4 Myr, Lx/L_{Edd}=5e-4 orig.
- Runs 24-28: increase Lx
- Dramatic decrease in M_{in} at Lx/L_{Edd}>0.01 ---transition from net inflow to net outflow

net outflow; non-spherical fragmentation observed.

Thermal instability due to rad. feedback

Non-spherical outflow: due to rad. feedback Run 26: r_{out}=200pc, Lx/L_{Edd}=0.01

Ptcl Properties: impact of rad feedback

Time Evolution of a Single Ptcl

Run 26: r_{out}=200pc, Lx/L_{Edd}=0.01, t=2.0 Myr

- Start (triangle): r=53 pc, t=1.4 Myr
- End (square): r=lpc, t=1.8 Myr
- + symbol: dt=0.004 Myr

Non-spherical outflow: Run 27: r_{out}=200pc, Lx/L_{Edd}=0.02 due to rad. feedback

Ptcl Properties: impact of rad feedback

Run 27: r_{out}=200pc, Lx/L_{Edd}=0.02

Non-spherical outflow: Run 28: r_{out}=200pc, Lx/L_{Edd}=0.05 due to rad. feedback

Temperature

Density

± 200pc

Run 28

r_{out}=200pc, Lx/L_{Edd}=0.05

log gas temperature

<u>Conclusions</u>

- GADGET-3 SPH code can reproduce the spherical Bondi accretion rate properly, but with some limitations.
- spurious heating by Artificial Viscosity near r_{in} & artificial outflow at r_{out} due to outer BC are problems for SPH.
- non-spherical in/outflow develops due to rad. feedback via thermal instability, even in the simplest situation that we studied --- connection with NLR? (Paper II)
- Future work: include rad. pressure, rotation, diff geometry, comparison w/ NLR obs, connect with cosmological sim

± 30 pc range (t = 2.047 Myr)

colder, denser filament-like structures due to non-spherical fragmentation

Run 26: r_{out}=200pc, Lx/L_{Edd}=0.01

Zoom-in: inner 4 pc

