Anatomy of an outflow: mapping the Mrk 509 warm absorber

Jelle Kaastra

SRON

Netherlands Institute for Space Research
Collaborators

Nahum Arav, Stefano Bianchi, Josh Bloom, Alex Blustin, Graziella Branduardi-Raymont, Massimo Cappi, Elisa Costantini, Mauro Dadina, Rob Detmers, Jacobo Ebrero, Peter Jonker, Chris Klein, Jerry Kriss, Piotr Lubinski, Julien Malzac, Missagh Mehdipour, Stéphane Paltani, Pierre-Olivier Petrucci, Ciro Pinto, Gabriele Ponti, Eva Ratti, Katrien Steenbrugge, Cor de Vries
Main goal campaign

• Characterise warm absorber by stacked, high S/N, high-resolution RGS spectrum
• Measure / constrain any variability of the absorber by med-resolution, highly sensitive EPIC spectra
• From (lack of) variability, determine distance absorption components
Observation campaign Mrk 509

- Core: 10 x 60 ks XMM, spaced 4 days (RGS, EPIC & OM all used!)
- Simultaneous Integral 10 x 120 ks
- Followed by 180 ks Chandra LETGS, simultaneous with 10 orbits COS (HST)
- Preceded with Swift (UVOT, XRT) monitoring
- Supplemented with ground-based (WHT, Pairitel) photometry & grism
- Period: 4 Sept – 13 Dec 2009 (100 days)
- 7 papers published, 8 submitted/in progress
Lightcurve during 100 days

- Intense monitoring with XMM & Swift gives continuous ~4d sampling
- Outburst in middle XMM monitoring \rightarrow ideal for reverberation
- Strong correlation UV & Soft X-ray \rightarrow comptonisation soft excess (Mehdipour et al. 2011)
Spectral energy distribution

- DBB
- Soft excess
- Power law
Time-dependent SEDs
Sample high-resolution spectra
Discrete ionisation components?

- Fitting RGS spectrum with 6 discrete WA components (A1-C1, C2-E2)
- Alternative: fit individual column densities, then decompose that into discrete components A-E (integrated over v)
Continuous AMD model

- Fitted columns with continuous (spline) model
- Surprise: comps C & D pop-up as discrete components!
- Upper limits FWHM 35 & 80 %
- Component B (& A) too poor statistics to prove if continuous
- Component E also poorer determined: correlation ξ and N_H

\Rightarrow Discrete components
Pressure equilibrium? No!
Time-dependent photoionisation

- SED changes in complex way
- Absorber adjusts on timescale $t_{\text{rec}} \sim 1/n$
- Solve t-dependent equations:
 - $\frac{dn_i}{dt} = A_{ij}(t) n_j$
 - $A_{ij}(t)$ contains t-dependent ionisation & recombination rates

Simplified case: predicted change transmission for 0.1 dex increase L, At spectral resolution EPIC/pn
Example of time-dependent calculation
• Models for instantaneous response:
• No sign of predicted signal
• \(\rightarrow \) lower density
• RGS gives similar constraints
Long term variability

• Compare archival spectra to our 2009 spectrum
• Predictions for change in components C, D and E
• Only change seen for component D
Upper limits distance

- Recombination time scale yields density n
- Using $\xi = \frac{L}{nr^2} \Rightarrow r = \sqrt{\frac{L}{\xi n}}$
- Using measured column density $N = n\Delta r$
 with Δr the thickness of the layer and $\Delta r < r$
 $\Rightarrow r < \frac{L}{N\xi}$
Summary distance limits

<table>
<thead>
<tr>
<th>Component</th>
<th>Lower limit (pc)</th>
<th>Method</th>
<th>Upper limit (pc)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>~3000</td>
<td>Direct imaging</td>
<td>~3000</td>
<td>Direct imaging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[O III]</td>
<td></td>
<td>[O III]</td>
</tr>
<tr>
<td>B</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>C</td>
<td>71</td>
<td>pn & RGS, Fe blend</td>
<td>9000</td>
<td>Δr/r<1</td>
</tr>
<tr>
<td>D</td>
<td>4.7</td>
<td>RGS O VIII</td>
<td>33</td>
<td>Long-term pn</td>
</tr>
<tr>
<td>E</td>
<td>4.6</td>
<td>pn, Fe blend</td>
<td>21-400</td>
<td>Δr/r<1</td>
</tr>
</tbody>
</table>
Physical parameters

• The mass outflow rate is very large:

• using $\dot{M} = \Omega m_p n r^2 v$ with $n r^2 = L/\xi$ gives:

• $\dot{M}/\Omega = 2000, 25, 22, 2.1$ and 0.6 Msun/yr for components A-E

• Compare to accretion rate of about 0.5 Msun/yr

• either small filling factor, super-Eddington or small solid angle

• Kinetic luminosity is very small (at most $10^{-4} \times$ the ionising luminosity)
Other highlights

- Excellent UV spectra with COS (see talk Jerry Kriss)
- Accurate abundances of the outflow (Steenbrugge et al.)
- Fe-K studies (Ponti et al.)
- Continuum emission modeling, including soft excess (Mehdipour et al., Petrucci et al.)
- Broad X-ray emission lines (Costantini et al.)
- Interstellar foreground absorption (Pinto et al.)
- Etc.
Conclusions

• Deep, multi-wavelength monitoring campaigns (AGN) are rewarding:
• High quality spectra, not limited by statistics
• “Continuous” light curves, allowing to monitor the variations
Spare slides
Photoionisation modelling

- Radiation impacts a volume (layer) of gas
- Different interactions of photons with atoms cause ionisation, recombination, heating & cooling
- In equilibrium, ionisation state of the plasma determined by:
 - spectral energy distribution incoming radiation
 - chemical abundances
 - ionisation parameter $\xi = L/nr^2$ with L ionising luminosity, n density and r distance from ionising source; ξ essentially ratio photon density / gas density
Photoionisation models

- Models for transmission of a thin slab
- Continuum & line absorption calculated
- slab model: ion columns independent
- xabs model: ion columns coupled through xstar/cloudy runs
- warm model: continuous distribution of $N_H(\xi)$
X-ray analysis

- Fit spectra using a power law + modified blackbody (or even a spline) continuum
- Where needed, add emission lines: relativistic, BLR or NLR X-ray lines
- Fit warm absorber using a model (see previous slide) → ionic or total column densities
- Using photo-ionisation model, derive N_H and ξ distribution
- Spectral fits done with SPEX, global fits
Decomposition into separate ξ: evidence for 5 components

- Use column densities Fe ions from RGS data
- Measured N_{ion} as sum of separate ξ components
- LETGS results similar
- Need at least 5 components
Separate components in pressure equilibrium?

- Not all components in pressure equilibrium (same $\Xi \sim \xi / T \sim F / p$)
- Division into ξ comps often poorly defined
- \Rightarrow Continuous $N_H(\xi)$ distribution: see next slide
Column density versus ξ
Density estimates: reverberation

- If L increases for gas at fixed n and r, then $\xi = \frac{L}{nr^2}$ increases
- \Rightarrow change in ionization balance
- \Rightarrow column density changes
- \Rightarrow transmission changes
- Gas has finite ionization/recombination time t_r (density dependent as $\sim \frac{1}{n}$)
- \Rightarrow measuring delayed response yields $t_r \Rightarrow n \Rightarrow r$
COS spectrum Mrk 509
RGS analysis

- Because of excellent quality, many new steps developed
- *Example*: combining spectra with variable hot pixels
- Several other instrumental issues resolved (separate paper) (λ-scale, effective area, response $2\text{Gb} \Rightarrow 8 \text{Mb}$, rebinning...)

![Graph showing spectrum analysis](image)
Stacked RGS spectrum

- See Galactic O I edge
- Several narrow absorption lines
No O I from host galaxy

O I host galaxy
(not detected,
$N_H < 5 \times 10^{18} \text{ cm}^{-2}$)

Wavelength (Å)
Ejection/outflows: Blue-shifted absorption lines/edges - Variability
Absorbers variabiliy on timescales 1000-10000s

NGC1365

Obs1
Obs2
Obs3

Netherlands Institute for Space Research

Cappi et al., 2009
Dadina et al. ’05

Risaliti et al. 2005
(See also Krongold et al. 2007 on NGC4051)

Mrk 509 (long-look, 200ks)
Mass loss through the wind

\[\dot{M}_{\text{loss}} = \Omega m_p n r^2 v \]

\[n r^2 \cdot v = (L / \xi) \cdot v \]

\[\dot{M}_{\text{loss}} < \dot{M}_{\text{acc}} \]

\[L = \eta \dot{M}_{\text{acc}} c^2 \]

\[\Omega < \frac{(\xi / v)}{\eta m_p c^2} \]

<table>
<thead>
<tr>
<th>ξ (km/s)</th>
<th>-166</th>
<th>-1040</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ=1</td>
<td>0.0007</td>
<td>0.0001</td>
</tr>
<tr>
<td>ξ=1000</td>
<td>0.7</td>
<td>0.1</td>
</tr>
</tbody>
</table>