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Main goal campaign 

•  Characterise warm absorber by stacked, 
high S/N, high-resolution RGS spectrum 

•  Measure / constrain any variability of the 
absorber by med-resolution, highly 
sensitive EPIC spectra 

•  From (lack of) variability, determine 
distance absorption components 
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Observation campaign Mrk 509 
•  Core: 10 x 60 ks XMM, spaced 4 days (RGS, EPIC & OM all used!) 
•  Simultaneous Integral 10 x 120 ks 
•  Followed by 180 ks Chandra LETGS, simultaneous with 10 orbits 

COS (HST) 
•  Preceded with Swift (UVOT, XRT) monitoring 
•  Supplemented with ground-based (WHT, Pairitel) photometry & 

grism 
•  Period: 4 Sept – 13 Dec 2009 (100 days) 
•  7 papers  published, 8 submitted/ in progress 



Lightcurve during 100 days 
•  Intense monitoring with 

XMM & Swift gives 
continuous ~4d sampling 

•  Outburst in middle XMM 
monitoring  ideal for 
reverberation 

•  Strong correlation UV & 
Soft X-ray  
comptonisation soft 
excess (Mehdipour et al. 
2011) 
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Spectral energy distribution 
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Soft excess 

Power law 

DBB 



Time-dependent SEDs 
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Sample high-resolution spectra 



Discrete ionisation components? 

•  Fitting RGS spectrum 
with 6 discrete WA 
components (A1-C1, 
C2-E2) 

•  Alternative: fit 
individual column 
densities, then 
decompose that into 
discrete components 
A-E (integrated over v)   
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Continuous AMD model 
•  Fitted columns with 

continuous (spline) model 
•  Surprise: comps C & D 

pop-up as discrete 
components! 

•  Upper limits FWHM 35 & 
80 % 

•  Component B (& A) too 
poor statistics to prove if 
continuous 

•  Component E also poorer 
determined: correlation ξ 
and NH 

•   Discrete components 

C 

D 

B 

E 



Pressure equilibrium? No! 
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Time-dependent photoionisation 

•  SED changes in 
complex way 

•  Absorber adjusts on 
timescale trec~1/n 

•  Solve t-dependent 
equations:  

•  dni/dt = Aij(t) nj 

•  Aij(t) contains t-
dependent ionisation 
& recombination rates 
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Simplified case: predicted change 
transmission for 0.1 dex increase L, 
At spectral resolution EPIC/pn 



Example of time-dependent 
calculation 

13 



•  Models for 
instantaneous 
response: 

•  No sign of 
predicted signal 

•   lower density 
•  RGS gives similar 

constraints 

•  Models for 
instantaneous 
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Long term variability 

•  Compare archival 
spectra to our 2009 
spectrum 

•  Predictions for 
change in 
components C, D 
and E 

•  Only change seen 
for component D 
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Upper limits distance 

•  Recombination time scale yields density n 
•  Using ξ=L/nr2 r=√(L/ ξn) 
•  Using measured column density N=nΔr 

with Δr the thickness of the layer and Δr <r 
 r<L/Nξ 
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Summary distance limits 
Component Lower limit 

(pc) 
Method Upper limit 

(pc) 
Method 

A ~3000 Direct imaging 
[O III] 

~3000 Direct imaging 
[O III] 

B ? ? 
C 71 pn & RGS, Fe 

blend 
9000 Δr/r<1 

D 4.7 RGS O VIII 33 Long-term pn 
E 4.6 pn, Fe blend 21-400 Δr/r<1 
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Physical parameters 

•  The mass outflow rate is very large:  
•  using Mdot = Ωmpnr2v with nr2=L/ξ gives: 
•  Mdot/Ω = 2000, 25, 22, 2.1 and 0.6 Msun/yr for 

components A-E 
•  Compare to accretion rate of about 0.5 Msun/yr 
•   either small filling factor, super-Eddington or 

small solid angle 
•  Kinetic luminosity is very small (at most 10-4 x 

the ionising luminosity) 
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Other highlights 
•  Excellent UV spectra with COS (see talk Jerry Kriss) 
•  Accurate abundances of the outflow (Steenbrugge et al.) 
•  Fe-K studies (Ponti et al.) 
•  Continuum emission modeling, including soft excess 

(Mehdipour et al., Petrucci et al.) 
•  Broad X-ray emission lines (Costantini et al.) 
•  Interstellar foreground absorption (Pinto et al.) 
•  Etc. 
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Conclusions 

•  Deep, multi-wavelength monitoring 
campaigns (AGN) are rewarding: 

•  High quality spectra, not limited by 
statistics 

•  “Continuous” light curves, allowing to 
monitor the variations 
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Spare slides 
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Photoionisation modelling 
•  Radiation impacts a volume (layer) of gas 
•  Different interactions of photons with atoms 

cause ionisation, recombination, heating & 
cooling 

•  In equilibrium, ionisation state of the plasma 
determined by: 
–  spectral energy distribution incoming radiation 
–  chemical abundances 
–  ionisation parameter ξ=L/nr2 with L ionising 

luminosity, n density and r distance from ionising 
source; ξ essentially ratio photon density / gas density 
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Photoionisation models 
•  Models for transmission 

of a thin slab 
•  Continuum & line 

absorption calculated 
•  slab model: ion columns 

independent 
•  xabs model: ion columns 

coupled through xstar/
cloudy runs 

•  warm model: continuous 
distribution of NH(ξ) 
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X-ray analysis 

•  Fit spectra using a power law + modified 
blackbody (or even a spline) continuum 

•  Where needed, add emission lines: relativistic, 
BLR or NLR X-ray lines 

•  Fit warm absorber using a model (see previous 
slide)  ionic or total column densities 

•  Using photo-ionisation model, derive NH and ξ 
distribution 

•  Spectral fits done with SPEX, global fits 
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Decomposition into separate ξ: 
evidence for 5 components 

•  Use column densities 
Fe ions from RGS 
data 

•  Measured Nion as sum 
of separate ξ 
components 

•  LETGS results similar 
•  Need at least 5 

components 
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Separate components in pressure 
equilibrium? 

•  Not all components in 
pressure equilibrium 
(same Ξ~ξ/T~F/p) 

•  Division into ξ comps 
often poorly defined 

•   Continuous NH(ξ) 
distribution: see next 
slide 
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Column density versus ξ 
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Density estimates: reverberation 

•  If L increases for gas at fixed n and r, then 
ξ=L/nr² increases  

•   change in ionization balance  
•   column density changes  
•   transmission changes 
•  Gas has finite ionization/recombination 

time tr (density dependent as ~1/n) 
•   measuring delayed response yields 

trnr 
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COS spectrum Mrk 509 
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RGS analysis 
•  Because of excellent 

quality, many new steps 
developed 

•  Example: combining 
spectra with variable hot 
pixels 

•  Several other 
instrumental issues 
resolved (separate paper) 
(λ-scale, effective area, 
response 2Gb8 Mb, 
rebinning…) 
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Stacked RGS spectrum 

•  See Galactic O I edge 
•  Several narrow 

absorption lines 
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No O I from host galaxy 

O I host galaxy  

(not detected,  

NH<5x1018 cm-2) 
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Absorbers variability on timescales 1000-10000s  
Ejection/outflows: Blue-shifted absorption lines/edges - Variability 

Risaliti et al. 2005 

NGC1365 Mrk 509 (long-look, 200ks) 

Cappi et al., 2009 
Dadina et al. ‘05 

Obs1 

Obs2 

Obs3 

Variability allows to place limits on location, mass, etc. 
(See also Krongold et al. 2007 on NGC4051) 
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Mass loss through the wind 

v (km/s) -166 -1040 

ξ=1 0.0007 0.0001 

ξ=1000 0.7 0.1 
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