NORTHWESTERN UNIVERSITY

Variable High Velocity Winds from Broad Absorption Line Quasars

Daryl Haggard¹, Kenza S. Arraki², Paul Green ${ }^{3}$, Tom Aldcroft³, Scott Anderson ${ }^{4}$
1-Northwestern University/CIERA; 2-New Mexico State University, NSF GRFP;
3-Harvard-Smithsonian Center for Astrophysics; 4-University of Washington

Introduction

Quasar Outflows

- Most quasars show narrow absorption lines, whereas broad absorption lines (BALs) are less common and indicate acceleration - a massive, fast outflow originating near the supermassive black hole (SMBH).
 - (Left) A QSO velocity field in the disk wind model; the green region marks a high velocity outflow (Proga, et al. 2000). - BAL variability probes the structure, stability, location, energetics, and dynamics of the wind.

Motivation

- We aim to study the timescales, strengths, and velocity characteristics of variability in BAL QSO spectra, to constrain the size, location and physical state of the gas nearest the SMBH.
- Observations include seventeen BAL QSOs from the SDSS and the FLWO's FAST spectrograph as well as a set of control non-BAL quasar spectra, in which we expect to see little or no variability.

Data Collection

- The Sloan Digital Sky Survey provides photometry in five filters (u,g,r,i,z) and first-epoch spectroscopy.
- The Fred Lawrence Whipple Observatory hosts the I. 5 m Tillinghast telescope including the highthroughput FAST spectrograph, with which we acquire multi-epoch spectroscopy.

Cadences

- 19 BAL QSO are first observed across 3 consecutive nights, then for one night at cadences of 9,27 , and 81 days, then later at 1,2 , and 6 years.
- The spectra below are continuum-normalized multiepoch FAST spectroscopy for SDSS JI007+0532.
- The lower panels show (a) a zoom-in on the CIV BAL region, and (b) the average FAST spectrum divided out in order to enhance the variability signatures.

Results

Ensemble Trends

- Average CIV BAL equivalent width (EW) vs. the rest-frame time between epochs ($\Delta \mathrm{t}$; top); change in $\mathrm{EW}\left(\Delta \mathrm{EW}=\mathrm{EW}_{\text {epochN }}\right.$ $\left.\mathrm{EW}_{\text {epochl }}\right)$ vs. rest-frame $\Delta \mathrm{t}$ (middle), and the magnitude of the fractional change in EW vs. $\Delta \mathrm{t}$ (bottom).

- The solid lines above mark the square root of the unbiased sample variance calculated from a sliding window of 15 time-ordered entries. The envelope of $\Delta \mathrm{EW}$ appears to expand with time.

- (Above) Fractional change in the absorption strength, $|\Delta A|<A>\mid$, vs. the mean outflow velocity for variable velocity intervals. This indicates the amplitude of the variability as a function of velocity.
- (Right) Fractional
change vs. <A>. Individual quasars may contribute multiple times at a given value of <A> Solid black curve: maximum possible $|\Delta A /<A>|$. Cyan curves: detection limits.

- (Left) Velocity width of variable intervals vs. restframe Δt, together with a histogram of velocity width. Variability clearly increases toward larger $\Delta \mathrm{t}$.

