Risaliti and Elvis 2010A&A...516A..89R

AGN Structure from the Three Forms of Radiation Pressure

Martin Elvis

Harvard-Smithsonian Center for Astrophysics

Atomic Features in Quasar Spectra

Should have a Unified, Simple Theory

Major Features of Elvis 'Funnel Wind'

Elvis 2000 ApJ 545, 63; 2003 astro-ph/0311436

The 3 Forms of Radiation Pressure

Structure of this talk:

- 1. Compton scattering *short*
- 2. Line driving long
- 3. Dust driving *short*
- 4. Implication short

Claim: Radiation Driving Determines Quasar Structure

Compton Driving

Only works at or above Eddington

Failed Compton wind in most AGN?

Failed Compton Winds in Sub-Edd AGNs

NGC1365: Risaliti et al., 2005, ApJL, 630, L129

Disk Geometry Creates Shielding Gas

Risaliti and Elvis 2010A&A...516A..89R

Spherical: no net effect

 $\tau > 1 =$ "hitchiking gas" of Murray & Chiang 1997

Line Driving

Warm Absorbers and Associated Absorbers

• Line Driving: Multiplier >100 x Compton scattering in O-stars– works far below L_{Edd}

Castor, Abbott & Klein 1975 (CAK) Murray et al, Murray & Chiang, Proga, ...

- Widely accepted for WA and UV NALs
- 2-3 phase medium fits all cases Krongold et al., Netzer et al., Andrade-Velazquez et al. 2010ApJ...711..888A
- Equatorial?
- Wide range of radii?
- Non-analytical, hard to span parameter space with hydro simulations

A Non-Hydrodynamical Model for Acceleration of Line-Driven Winds in AGNs Risaliti and Elvis 2010A&A...516A..89R

- Supersonic wind from early on
- Separate acceleration from launching
 - Initial vertical velocity
- Treat as gas elements
 - BH gravity
 - Line driven radiation pressure
 - Point X-ray source
 - Disk UV source
 - Radiative transfer
 - CLOUDY + CAK = QWIND

Results

Reproduces Major Features of Elvis 'Funnel Wind'

Elvis 2000 ApJ 545, 63; 2003 astro-ph/0311436

Exploring Parameter Space BELR Wind

Rapid X-ray Eclipses – days to hours

Transiting, Transient BLR clouds

Sizes D ~ 10^{13} cm. Blobs or sheets?

Dust Driving

Other "type changing" AGNs

BLR Clouds Launched by Dust Driving

- Most efficient absorber
- Dust formed when outer disk atmosphere <1000K
- \bullet Happens from H β radius outward
- Slow N_H eclipses ~years

Czerny & Hrniewicz 2011 A&A 525 L8

The 3 Forms of Radiation Driving Determine Quasar Structure

Implication: Matter Launched at all Disk Radii

Evidence: Short-lived BLR clouds, constantly renewed

Evidence: "Cometary" Eclipsers

BLR 'Breathing'

Peterson et al. 1999 ApJ, 510, 659

→ gas ejected over whole range of radii

Question becomes: What is the Launching Mechanism?

- Distinct from Acceleration
- One mechanism, or multiple?
- Multiple:
 - Dust Driving: T_{disk} < 1000 K
 - Line Driving: T_{disk} >~ 30,000 K
 - What about $1000 < T_{disk} < 30,000$?
- Single: Magnetic recombination
 - Solar Coronal Mass Ejections reach 1000 km/s
 - Driven by MRI?
 - Is disk ionized enough at all radii?
- MHD winds?

The 3 Forms of Radiation Driving Determine Quasar Structure

Now explore broad parameter space, launching

High L/L_{Edd} does not automatically imply a faster wind

The 3 Forms of Radiation Driving Determine Quasar Structure

Now explore broad parameter space, launching