Winds in Mrk 509:

A common origin for the X-ray and UV ionized gas

Jacobo Ebrero (SRON), on behalf of the Mrk 509 campaign consortium

Abstract

The Seyfert 1 galaxy Mrk 509 was subject to an extensive multi-wavelegth campaign in 2009. The study of the X-ray high-resultion spectrum indicates the presence of a warm absorber (WA) with at least 5 discrete ionization components in 3 velocity regimes. The HST/COS UV spectrum reveals a complex absorber with 13 kinematic components. The absorbing gas likely in high-density low-ionization clouds responsible for the UV absorption, which are embedded in a less dense highly ionized wind responsible for the X-ray absorption features.

The Mrk 509 campaign

The multiwavelength campaign on Mrk 509 aims to address a number of key questions such as the location and physics of the WA outflows, the nature of the continuum emission, the geometry and physical state of the BLR, the Fe-K complex, the metal abundances, and the ISM of our own Galaxy along our line of sight.

The Mrk 509 outflow in X-rays and UV

- XMM-Newton RGS (600 ks; Detmers+11): - 5 ionization components, 2 velocity regimes - Chandra LETGS (180 ks; Ebrero+11):

For that purpose data from 5 satellites (XMM, Chandra, Integral, Swift, and HST) and 2 groundbased facilities (WHT and Pairitel) were collected. An overview of the campaign can be found in Kaastra +11.

- 3 ionization components, 3 velocity regimes - HST/COS (simultaneous with Chandra; Kriss+11): - 13 kinematic components

The X-ray absorbers can be kinematically associated to at least 3 UV components, suggesting a possible co-location.

The X-ray WA is made up of discrete components, likely in pressure equilibrium.

The UV spectrum of Mrk 509 showed a complex absoption system with 13 kinematic components ranging from $\Delta v =$ -408 to +222 km/s (Kriss+11; see table on the right).

At least 3 of these components, one redshifted and two blueshifted with respect to the systemic velocity of the source, can be kinematically associated to the X-ray WA components seen in the LETGS spectrum (Ebrero+11). Likewise, the two velocity regimes detected in the RGS

UV Component	v_{out}^{a}	N _{CIV} ^b	N _{NV} ^b	Novi ^{b,c}	LETGS ^d
1	-408 ⊥ 5	31.2 ± 1.5	107.0 ± 9.5	215.0 ± 47.2	3
1b	-361 ± 13	16.3 ± 6.1	17.5 ± 1.6	154.9 ± 39.0	3?
2	-321 ± 5	136.3 ± 41.7	149.0 ± 10.7	566.2 ± 118.0	3?
2b	-291 ± 6	128.9 ± 41.4	130.6 ± 11.3	1248.1 ± 395.5	2?
3	-244 ± 5	47.7 ± 7.2	88.6 ± 8.1	675.2 ± 157.1	2
4a	-59 ± 5	66.3 ± 2.1	93.6 ± 6.8	804.5 ± 387.2	
4	-19 ± 5	250.0 ± 11.0	323.6 ± 12.2	8797.0 ± 4120.3	
5	37 ± 5	36.2 ± 16.9	38.3 ± 11.1	683.5 ± 429.3	1
ба	79 ± 12	5.6 ± 2.3	20.6 ± 6.4	518.8 ± 398.5	1
Ó	121 ± 5	12.3 ± 6.4	56.1 ± 4.0	3436.1 ± 6985.0	1?
6b	147 ± 8	17.6 ± 5.3	5.5 ± 1.8	104.5 ± 234.6	
7a	184 ± 6	3.6 ± 1.1	21.0 ± 2.9	660.2 ± 176.7	
7	222 ± 6	6.4 ± 0.8	23.5 ± 2.7	667.4 ± 1105.3	

Properties of the HST/COS UV intrinsic features in Mrk 509: outflow velocity and ionic column densities for CIV, NV, and OVI (based on FUSE observations). The UV components are labeled following the Kriss+11 numbering. The last column denotes the possible X-ray counterparts of some kinematic components seen in the Chandra LETGS spectrum (Ebrero+11).

spectrum are consistent with the main absorption troughs in the UV (Detmers+11).

Structure of the outflow

If the UV and X-ray absorbing gas are co-located, from the definition of the ionization parameter $\xi = L/nR^2$ they share L and R. Since ξ is much lower for the UV gas, its density must be higher than that of the X-ray gas. This would be consistent with a scenario where high-density low-ionization UV-absorbing clouds are embedded in a low-density high-ionization X-ray wind (Ebrero+11b, in prep.).

References

Detmers et al. 2011, A&A, 534, A38 Ebrero et al. 2011a, A&A, 534, A40 Ebrero et al. 2011b, A&A, in preparation

Kaastra et al. 2011, A&A, 534, A36

Kriss et al. 2011, A&A, 534, A41

Netherlands Institute for Space Research