The Suzaku view of highly-ionised outflows in AGN

Jason Gofford, James Reeves (Keele) Valentina Braito (Leicester) Francesco Tombesi (GSFC/Maryland)

XMM Sample - Recap

- Previous study with XMM found ~40% of local (z<0.1) AGN have blue-shifted narrow Fe K absorption (Tombesi et al. 2010, 2011)
 - Absorbers distributed over a range of parameters (N_H, logξ, V_{out})
 but peak parameters: N_H~10²³ cm⁻², logξ~4.0, V_{out}~0.1c

The Suzaku Sample:

Consists of all available pointed AGN spectra in Suzaku archive which:

- Have total net exposures >50ks
- ✤ Not Blazars/BL Lac
- ✤ Not Compton Thick TypeII (i.e. N_H < 10²⁴ cm⁻²)
- Minimum 2-10 keV counts >10k

All spectra parameterised utilising the <u>full 0.6-50.0 keV Suzaku</u> <u>bandpass</u>:

- * S.C. modelling of Reflection/FeKa with reflionx (ξ ~I)
- Soft X-ray warm absorption modelled with XSTAR.
- Soft-excess fit with *bbody* as necessary

Sample is growing: observations added as they become public.

Currently: 59 spectra of 45 objects fit and tested for Fe K absorp.

Keele University

Assessing Fe K absorption

- For a manually fit continuum model, perform a search for Fe K absorption using both contour plots and by-eye Gaussian fitting. (similar to Tombesi et al.)
 - Detailed Montecarlo simulations performed for all spectra with suspected absorption lines with $\Delta \chi^2$ [dof]>9.21[2] (99%)
 - Gaussian stepped every 25 eV over entire Fe K band (5-9.5 keV) in 1000 simulated spectra (180,000 fits per spectrum)
 - * Samples probability of random lines to the nearest 0.1%
 - Time consuming, still being run (>week per spectrum)
 - Spectra with least significant lines Montecarlo'd first (8/9 >99.5%)

Spectral parameters taken from Gaussian fit, and XSTAR modelling.

Results & Examples

- I6/45 objects found to have significant Fe K absorption in 21/59 fitted spectra (~36%)
- Four objects with Fe K absorption. in >1 obs, w/ evidence for variability (e.g. PDS456, Mrk766, NGC3227)

AGN Winds in Charleston (15th October 2011)

Keele University

 Keele University

😽 Keele University

Results & Examples

- I6/45 objects found to have significant Fe K absorption in 21/59 fitted spectra (~36%)
- Four objects with Fe K absorption. in >1 obs, w/ evidence for variability (e.g. PDS456, Mrk766, NGC3227)

Lines	No. of Objects
Fe XXV+Fe XXVI (same V _{out})	6
Fe <xxv< td=""><td>2</td></xxv<>	2
Fe XXVI only	6
MultiV _{out} systems	2
	16

Absorber properties

Keele University

Absorber properties

<V_{out},Suzaku>≈0.11c <V_{out},XMM>≈0.09c

Keele University

Mean Energetics

Mass outflow rate:
$$\dot{M}_{\rm out} = 4\pi b \left(\frac{L_{\rm ion}}{\xi}\right) m_{\rm p} V_{\rm out}$$

Eddington rate:
$$\dot{M}_{Edd} = \frac{4\pi M_{BH} m_p}{\sigma_T} \left(\frac{1}{\eta c}\right)$$

M_{BH} from literature assumed 5% efficiency

- ✤ M_{Edd} more robust upper limit
- * Avoid uncertainty with L_{bol} corrections/estimates
- ✤ Get useful mean upper limits

Mean Energetics

<Mout>~200 Msun/yr

On average, $C_v < \sim 0.2$ for $C_f \sim 0.35$ and efficiency of 5%

Conclusions & Summary

- Independent studies with Suzaku and XMM both find blue-shifted Fe K absorption in ~35-40% of AGN.
- Absorber parameters (N_H, logξ) are in very good agreement. V_{out} differs in distribution, likely due to detector differences (e.g. effective area/energy resolution), but we find a similar <V_{out}>~0.1c
- Taking M_{edd} as robust estimate for M_{acc}(max), we find that, on average, wind "clumpyness" of the order of C_v~20% (or higher if M_{out}/M_{edd}>1 permitted)

