Understanding the Influence of SMBH

Three Important Equations

1. \(M_{\text{SMBH}} \sim 10^{-3} \times M_{\text{Bulge}} \)

2. \(M_{\text{SMBH}} \approx 3 \times 10^8 M_\odot \sigma_{200}^\alpha \)

3. \(R_{\text{inf}} \approx 8 \frac{M_8}{\sigma_{200}^2} \text{ pc} \)

Significance

1. The mass of the SMBH is almost always a constant fraction of the mass of the bulge.

2. The mass of the SMBH is tightly correlated to the velocity dispersion in the bulge.

3. Most of the entire galaxy is gravitationally unaware of the SMBH.

How can this be so?
Methods of Communication

 Radiation: how all the accretion energy is initially released

 Mechanical, i.e., literally moving gas around: huge luminosities drive gas through the galaxy

 Jets vs. Winds

 Jets: highly collimated flows driven from very near the SMBH, somewhat rare

 Winds: nearly isotropic outflows, common to many AGN

 IRAS F11119+3257 artist depiction
Detecting Winds: Spectrum of PG1211+143
Modeling Winds: Spectrum of PG1211+143

Gaussian fit, $v \sim 0.12c$

Photoionized gas model, $v \sim 0.15c$
Observational Evidence of UFOs
(Ultra-Fast Outflows)

Cappi 2006 found 7 non-BAL objects with $v \sim 0.1c$

Tombesi et al. 2010 found outflows in $15/42$ radio-quiet objects, $v \sim [0.1c,0.3c]$ (XMM-Newton archive)

Gofford et al. 2013 found similar outflows in $20/51$ AGN, also with $v \sim [0.1c,0.3c]$ (Suzaku archive)

\Rightarrow Rather common
Energy Output and Binding Energies

Black hole mass should be related to galaxy properties that depend on galactic gas, since it is through accretion of this gas that it grows.

The important comparison is between E_{BH} and E_{gas}.

The energy is more than enough to disrupt all of the gas in the bulge of the galaxy, so it must not be communicated efficiently \rightarrow slowed outflows.

\[
E_{\text{BH}} \sim \eta M c^2 \sim 2 \times 10^{61} M_8 \text{ erg}
\]

\[
E_{\text{bulge}} \sim M_b \sigma^2 \sim 8 \times 10^{58} M_8 \sigma_{200}^2 \text{ erg}
\]

\[
E_{\text{gas}} = f_g E_{\text{bulge}},
\]

\[
E_{\text{BH}} \sim 2 \times 10^3 E_{\text{gas}}
\]
Shocked Outflows

Significant Inverse Compton cooling

\[
E_{\text{mom}} \sim \frac{\sigma}{c} E_{\text{BH wind}} \sim \frac{\sigma \eta^2}{c^2} M c^2 \sim 5 \times 10^{-5} M c^2 \sim 0.1 E_{\text{gas}}
\]
Energy Dominated Flows

• Cooling time is not significant

• Expansion is adiabatic so it retains its heat, and at greater distances the cooling time begins to increase, confining momentum flows to smaller radii and allowing energy dominated flows to extend much further

• Could not be supported long term because this would blow out all of the gas that the SMBH feeds on → couldn’t reach observed masses
The M-σ Relation

A quick derivation that leads to a qualitatively similar M-σ relation

\[\rho(r) = \frac{f_g \sigma^2}{2\pi Gr^2}, \]

\[M(R) = \frac{2\sigma^2 R}{G}. \]

\[M_g(R) = \frac{2 f_g \sigma^2 R}{G}, \]

\[\frac{d}{dt} [M_g(R) \dot{R}] + \frac{GM_g(R)[M + M(R)]}{R^2} = \frac{L_{\text{Edd}}}{c}, \]

where

\[M_\sigma = \frac{f_g c}{\pi G^2} \sigma^4. \]

\[R^2 \dot{R}^2 = -2GMR - 2\sigma^2 \left[1 - \frac{M}{M_\sigma} \right] R^2 + \text{constant}. \]

\[\dot{R}^2 \simeq -2\sigma^2 \left[1 - \frac{M}{M_\sigma} \right], \]

What if M < M_σ?
What happens at M_σ and Beyond

$$M_{\text{SMBH}} \approx 3 \times 10^8 M_\odot \sigma_{200}^\alpha$$

Something must happen to halt black hole growth at this point \Rightarrow The black hole must expel all the gas

For $M \gg M_\sigma$, the solution to $\dot{R}^2 = -2\sigma^2 \left[1 - \frac{M}{M_\sigma} \right]$, allows for R to grow very large, larger than the critical radius at which cooling takes place.

For $M \gg M_\sigma$, the shock wave becomes energy driven, and can extend for kpc scales \Rightarrow Clear out
The Effects of a “Clear out” Considering Galactic Morphology

Disk Galaxies, e.g. spirals

Eventually the outflow must encounter the galactic disk. The resistance causes the flow proceed above and below the disk, however, $P_{\text{outflow}} \gg P_{\text{disk}}$

\rightarrow Triggered star formation

Elliptical Galaxies

In the absence of a disk, the energetic outflows proceed more or less uninterrupted, leaving spherical galaxies “red and dead”

Different morphologies and locations in which galaxies are found will yield different interactions between galaxies and their environments \rightarrow
Three (four) M-σ relationships
Three (Four) M-σ Relationships
Our previous discussion asserts that σ determines M_{SMBH}, so we cannot say that M_{bulge} independently determines M_{SMBH}.

Additionally, M_{SMBH} cannot determine M_{bulge} because it is in the form of stars.

Hypothesis: Whatever determines M_{bulge} also makes it proportional to σ^4 (and therefore M_{SMBH}). Why?

Star Formation & Stellar Feedback

\[L_* \sim 2 \times 10^{10} \, L_\odot \, \sigma_{200}^4. \]

\[M/L \sim 5 \text{ (Faber-Jackson is empirical)} \]

\[M_* \sim 1 \times 10^{11} \, M_\odot \sigma_{200}^4 \sim 10^3 M. \]

\[M_b \sim \frac{0.14 f_g t_H \sigma^4}{\epsilon_* c G}, \]

\[M \sim M_\sigma \sim \frac{1.8 \kappa \epsilon_* c}{\pi G t_H} M_b \sim 10^{-3} M_b, \]
A Statistical Interpretation

The Less Accepted Hypothesis:

Jahnke & Maccio (2011) argue that the observed scaling relationships are the consequence of repeated mergers.

M_{SMBH} is proportional to M_{bulge} simply due to the central limit theorem, i.e., a value that centers more and more closely on the mean of the system for increasing numbers of mergers.

Counter-Argument:

1. This hypothesis does not determine the ratio of M_{SMBH}/M_{bulge}

2. This doesn’t simultaneously explain both $M_{SMBH}-M_{bulge}$ and $M_{SMBH}-\sigma$

3. It would be incredible coincidence that this “chance” collision process produces the same $M_{SMBH}-\sigma$ relation needed to balance the weight of the bulge gas.
Summarizing Wind-Momentum Driving Effects ~ Small Scale

1. Super-solar elemental abundances in observed AGN spectra

2. Dark matter cusp removal

3. Quiescence of AGN hosts
Summarizing Wind-Energy Driving Effects ~ Large Scale

1. Metals in the circumgalactic medium

2. Mechanical luminosities of galaxy-scale molecular outflows

3. Suppression of cosmological infall
Remaining Question at Hand:

What mechanism can produce such a ready supply of gas with very small angular momentum, such that it can accrete onto the central SMBH fast enough for it to grow relatively quickly?

→ Not gravity

→ Perhaps feedback from SMBH can cause this?