Dark Matter, Dark Energy, and the Fate of the Universe
Curvature of the Universe

The Density Parameter of the Universe Ω_0 is defined as the ratio of the combined mass density ρ_0 to the critical mass density ρ_c:

$$\Omega_0 = \rho_0 / \rho_c$$

Closed Universe: $\rho_0 > \rho_c \Rightarrow \Omega_0 > 1$

Flat Universe: $\rho_0 = \rho_c \Rightarrow \Omega_0 = 1$

Open Universe: $\rho_0 < \rho_c \Rightarrow \Omega_0 < 1$

Where the critical mass density is:

$$\rho_c = \frac{3H_0^2}{8\pi G}$$

ρ_c = critical density of the Universe

For $H_0 = 68 \text{ km/s/Mpc}$ $\rho_c = 1.0 \times 10^{-26} \text{ kg/m}^3$
• Most “hot spots” have a size of about 1°.

Temperature differences are greatest between patches separated by 1°.

© 2014 Pearson Education, Inc.
Measuring the Curvature of the Universe

The method relies on finding a distant object with a known size and estimating how its angular size would appear in an open, flat and closed Universe. This can be done by looking at hot spots in the CMB. For a flat Universe the angular size of a hot spot is expected to be about 1° and that’s what we find!
Density Parameter: $\Omega_0 = \rho_0/\rho_c = 1$ (from CMB hot spots)

Matter Density Parameter: $\Omega_m = \rho_m/\rho_c = 2.4 \times 10^{-27}/1 \times 10^{-26} = 0.31$ (Planck 2015)

By taking into account all the mass (visible and dark) and radiation in the Universe we obtain a matter Density Parameter of 0.31 that is significantly less than 1. This means that there must be some additional energy source in the Universe to make up for a density parameter equal to 1. This mysterious energy source is called Dark Energy. With this dark energy we associate an average mass density of dark energy of ρ_Λ and a dark energy density parameter Ω_Λ.

Dark Energy Density Parameter: $\Omega_\Lambda = \rho_\Lambda/\rho_c$

$$\Omega_0 = \Omega_m + \Omega_\Lambda = 1$$ (from CMB hot spots)

This implies that the dark energy density parameter is $\Omega_\Lambda = 0.69$ (Planck 2015)
To address this question we need to look at the distances versus recession velocities of objects and see if the expansion rate changes with redshift. If the expansion rate is slowing down we expect a steeper slope in the Distance versus velocity plot.
The brightness of distant white dwarf supernovae tells us how much the universe has expanded since they exploded.
Does The Expansion Rate Change With Time?

The data from SN Ia follow the blue curve and show that the Universe was expanding at a slower rate in the past. The expansion of the Universe is now speeding up!
Does The Expansion Rate Change With Time?
Why Me Why Now?

In the past dark energy was unimportant and in the future it will be dominant!

We just happen to live at the time when dark matter and dark energy have comparable densities.

In the words of Olympic skater Nancy Kerrigan, “Why me? Why now?"
What do we mean by dark matter and dark energy?
Unseen Influences

- **Dark Matter**: An undetected form of mass that emits little or no light, but whose existence we infer from its gravitational influence.

- **Dark Energy**: An unknown form of energy that seems to be the source of a repulsive force causing the expansion of the universe to accelerate.
Contents of Universe (Planck 2015)

• "Ordinary" matter: ~ 4.9%
 – Ordinary matter inside stars: ~ 0.6%
 – Ordinary matter outside stars: ~ 4.3%
• Dark matter: ~ 26%
• Dark energy: ~ 69%
23.2 Evidence for Dark Matter

• Our goals for learning:
 – What is the evidence for dark matter in galaxies?
 – What is the evidence for dark matter in clusters of galaxies?
 – Does dark matter really exist?
 – What might dark matter be made of?
What is the evidence for dark matter in galaxies?
Rotation curve

- A plot of orbital velocity versus orbital radius
- The solar system's rotation curve declines because the Sun has almost all the mass.
- Mass within the Sun's orbit:
 \[1.0 \times 10^{11} M_{\text{Sun}} \]

Total mass:

\[\sim 10^{12} M_{\text{Sun}} \]
• The visible portion of a galaxy lies deep in the heart of a large halo of dark matter.
We can measure the rotation curves of other spiral galaxies using the Doppler shift of the 21-cm line of atomic hydrogen.
• Spiral galaxies all tend to have flat rotation curves, indicating large amounts of dark matter.
• Broadening of spectral lines in elliptical galaxies tells us how fast the stars are orbiting.

• These galaxies also have dark matter.
Mass-to-Light Ratio

- An object’s mass-to-light ratio (M/L) is its total mass in solar mass units divided by its visible luminosity in units of solar luminosity.

\[
\frac{M}{L} = \frac{M_{\text{solar}}}{L_{\text{Solar}}} = 1 \frac{M_{\text{solar}}}{L_{\text{Solar}}}
\]

M/L of Sun

\[
\frac{M}{L} = \frac{9 \times 10^{12} M_{\text{solar}}}{15 \times 10^9 L_{\text{Solar}}} = 6 \frac{M_{\text{solar}}}{L_{\text{Solar}}}
\]

Most mass in our galaxy is dimmer per unit mass than the Sun

A galaxy with a large M/L ratio may imply the presence of a significant dark matter component.
What is the evidence for dark matter in clusters of galaxies?
• We can measure the velocities of galaxies in a cluster from their Doppler shifts.
• The mass we find from galaxy motions in a cluster is about **50 times** larger than the mass in stars!
Finding Cluster Masses from Velocities

- The virial theorem states that $2E_K = -E_p$ where is the average total kinetic energy and E_p is the average total potential energy

\[
2E_K = -E_p \Rightarrow 2 \frac{1}{2} m v^2 = G \frac{Mm}{R} \Rightarrow
\]

\[
M(< R) = \frac{v^2 \times R}{G}
\]

where $M(< R)$ is the total mass (baryonic and dark matter) within a radius of R and v is the average velocity of a galaxy.
• Clusters contain large amounts of X ray-emitting hot gas.

• Temperature of hot gas (particle motions) tells us cluster mass:

 85% dark matter
 13% hot gas
 2% stars
Finding Cluster Masses from Gas Temperatures

- The relation between the hot gas temperature and average speed of an individual particle in the gas (which is mostly hydrogen) is:

\[v_H = (140 \text{ m/s}) \times \sqrt{T} \]

where \(T \) is the temperature of the gas in Kelvins.

Estimate the mass of a cluster with a temperature of \(T = 9 \times 10^7 \text{K} \) and a radius of 6.2 million light years

\[v_H = (140 \text{ m/s}) \times \sqrt{9 \times 10^7 \text{K}} = 1.33 \times 10^6 \text{m/s} \]

\[M(< R) = \frac{\left(1.33 \times 10^6 \text{m/s}\right)^2 \times R}{G} = \frac{\left(1.33 \times 10^6 \text{m/s}\right)^2 \times (6.2 \times 10^6) \times (9.461 \times 10^{15} \text{m})}{6.67408 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}} \Rightarrow \]

\[M(< R) = 1.55 \times 10^{45} \text{kg} \]
Gravitational lensing, the bending of light rays by gravity, can also tell us a cluster's mass.
• All three methods of measuring cluster mass indicate similar amounts of dark matter in galaxy clusters.
Thought Question

What kind of measurement does not tell us the mass of a cluster of galaxies?

A. measuring velocities of cluster galaxies
B. measuring the total mass of cluster's stars
C. measuring the temperature of its hot gas
D. measuring distorted images of background galaxies
Thought Question

What kind of measurement does not tell us the mass of a cluster of galaxies?

A. measuring velocities of cluster galaxies
B. measuring the total mass of cluster's stars
C. measuring the temperature of its hot gas
D. measuring distorted images of background galaxies
Does dark matter really exist?
What might dark matter be made of?

Measurements of deuterium match model predictions only for this narrow range in the density of ordinary matter.

- Deuterium
- Helium-3
- Lithium-7

abundance of light nuclei (relative to hydrogen)

density of ordinary matter (percentage of critical density)
Two Basic Options

• Ordinary Dark Matter
 – Matter made of protons, neutrons, electrons, but too dark to detect with current instruments

• Extraordinary Dark Matter
 – Weakly Interacting Massive Particles: mysterious neutrino-like particles
Two Basic Options

• Ordinary Dark Matter
 – Matter made of protons, neutrons, electrons, but too dark to detect with current instruments

• Extraordinary Dark Matter
 – Weakly Interacting Massive Particles: mysterious neutrino-like particles
Measurements of light element abundances indicate that ordinary matter cannot account for all of the dark matter.
Why Believe in WIMPs?

• There's not enough ordinary matter.

• WIMPs could be left over from Big Bang.

• Models involving WIMPs explain how galaxy formation works.
What have we learned?

• What is the evidence for dark matter in galaxies?
 – Rotation curves of galaxies are flat, indicating that most of their matter lies outside their visible regions.

• What is the evidence for dark matter in clusters of galaxies?
 – Masses measured from galaxy motions, temperature of hot gas, and gravitational lensing all indicate that the vast majority of matter in clusters is dark.
What have we learned?

- **Does dark matter really exist?**
 - Either dark matter exists or our understanding of our gravity must be revised.

- **What might dark matter be made of?**
 - There does not seem to be enough normal (baryonic) matter to account for all the dark matter, so most astronomers suspect that dark matter is made of (non-baryonic) particles that have not yet been discovered.
23.3 Dark Matter and Galaxy Formation

• Our goals for learning:
 – What is the role of dark matter in galaxy formation?
 – What are the largest structures in the universe?
• Gravity of dark matter is what caused protogalactic clouds to contract early in time.
• WIMPs can't collapse to the center because they don't radiate away their orbital energy.
What are the largest structures in the universe?

- Maps of galaxy positions reveal extremely large structures: **superclusters** and **voids**.
Time in billions of years

- Models show that gravity of dark matter pulls mass into denser regions—the universe grows lumpier with time.

As the universe expands over time, denser regions draw in more and more matter, creating a "lumpy" distribution.

Size of expanding box in millions of light-years

- 0.5 billion years: 13 million light-years
- 2.2 billion years: 35 million light-years
- 5.9 billion years: 70 million light-years
- 8.6 billion years: 93 million light-years
- 13.7 billion years: 140 million light-years

Not to scale!
• Structures in galaxy maps look very similar to the ones found in models in which dark matter is WIMPs.
What have we learned?

• **What is the role of dark matter in galaxy formation?**
 – The gravity of dark matter seems to be what drew gas together into protogalactic clouds, initiating the process of galaxy formation.

• **What are the largest structures in the universe?**
 – Galaxies appear to be distributed in gigantic chains and sheets that surround great voids.
23.4 Dark Energy and the Fate of the Universe

• Our goals for learning:
 – Why is accelerating expansion evidence for dark energy?
 – What is the fate of the universe?
Why is accelerating expansion evidence for dark energy?

\[\rho_m > \rho_c \quad \rho_m = \rho_c \quad \rho_m < \rho_c \]

- Recollapsing universe
- Critical universe
- Coasting universe
- Accelerating universe

Each of these slices of the universe is the same size at the present time.

\(\rho_m \) is the combined ordinary and dark matter density of the Universe.
• The fate of the universe depends on the amount of dark matter.
• Since the amount of dark matter is \(~26\%\) of the critical density, we expect the expansion of the universe to overcome its gravitational pull.
• In fact, the expansion appears to be speeding up!

• Dark energy?
- Estimated age depends on the amount of both dark matter and dark energy.
Thought Question

Suppose that the universe has more dark matter than we think there is today. How would this change the age we estimate from the expansion rate?

A. The estimated age would be larger.
B. The estimated age would be the same.
C. The estimated age would be smaller.
Thought Question

Suppose that the universe has more dark matter than we think there is today. How would this change the age we estimate from the expansion rate?

A. The estimated age would be larger.
B. The estimated age would be the same.
C. The estimated age would be smaller.
• The eventual fate of the universe depends upon the rate of the acceleration of the expansion.
• If the universe does not end in a Big Rip, it should keep expanding for a very long time. (Forever?)
• All matter will eventually end up as part of black holes, which will, if Stephen Hawking is right, will eventually evaporate.
What have we learned?

• Why is accelerating expansion evidence for dark energy?
 – In the absence of the repulsive force of dark energy the expansion of the universe should not be accelerating.

• Why is flat geometry evidence for dark energy?
 – Evidence from the CMB indicates that the universe is very near critical density, requiring an additional contribution to the mass-energy of the universe.
What have we learned?

• What is the fate of the universe?
 – The universe should keep expanding indefinitely, the universe eventually consisting of a dilute sea of fundamental particles.